NIES-MCC | KU-MACC | Tree to Strain Japanese | English
Life / Eukarya

Opisthokonta (Metazoa, choanoflagellates, Fungi etc.)
Thecomonadea (e.g. Amastigomonas, Apusomonas, Mantamonas, Thecomonas)
Hilomonadea (Ancyromonas)
Rigifilida (Rigifila, Micronuclearia
Breviatea (Breviata, Subulatomonas)
Amoebozoa (Physarum, Dictyostelium, Entamoeba, Amoeba, Arcella etc.)
Dipyllatea ( Collodictyon, Diphylleia, Sulcomonas )
Excavata (Euglenids, Giardia, Trichomonas, oxymonads etc.)
Plantae (Archaeplastida) (Glaucophyta, Rhodophyta, Viridiplantae)
Hacrobiahaptophytes, kathablepharids, Cryptophyceae, heliozoans etc.)
Rhizaria (Foraminifers, radiolarians, chlorarachninids etc.)
AlveolataCiliates, Apicomplexa, Dinophyta etc.)
Stramenopila(Labyrinthulids, Blastocystis, Opalinids, Oomycetes, Heterokontophyta etc.)

* Dotted lines indicate they may be non-monophyletic
1. Unikonta
2. Bikonta (= Plantae sensu Nozaki et al. 2007)
3. Harosa (= SAR clade)
Refereces
  • Burki, F. & Pawlowski, J. (2006) Monophyly of Rhizaria and multigene phylogeny of unicellular bikonts. Mol. Biol. Evol. 23: 1922-1930.
  • Hackett, J. D. et al. (2007) Phylogenetic analysis supports the monophyly of cryptophytes and haptophytes and the association of Rhizaria with Chromalveolata. Mol. Biol. Evol. 24: 1702-1713.
  • Nakada, T. (2008) Kimagure Seibutsugaku. http://www2.tba.t-com.ne.jp/nakada/takashi/index.html
  • Nozaki, H. et al. (2007) Phylogeny of primary photosynthetic eukaryotes as deduced from slowly evolving nuclear genes. Mol. Biol. Evol. 24: 1592-1595.
  • Paps, J., Medina-Chacon, L. A., Marshall, W., Suga, H., & Ruiz-Trillo, I. (2013) Molecular Phylogeny of Unikonts: New insights into the position of apusomonads and ancyromonads and the internal relationships of opisthokonts. Protist 164: 2-12.
  • Patron, N. J., Inagaki, Y. & Keeling, P. J. (2007) Multiple gene phylogenies support the monophyly of cryptomonad and haptophyte host lineages. Curr. Biol. 17: 887-891.
  • Rodríguez-Ezpeleta, N. et al. (2007) Toward resolving the eukaryotic tree: The phylogenetic positions of jakobids and cercozoans. Curr. Biol. 17: 1420-1425.
  • Yabuki, A., Chao, E. E., Ishida, K. I., & Cavalier-Smith, T. (2012) Microheliella maris (Microhelida ord. n.), an ultrastructurally highly distinctive new axopodial protist species and genus, and the unity of phylum Heliozoa. Protist 163: 356-388.
  • Zhao, S., Burki, F., Brate, J., Keeling, P. J., Klaveness, D., & Shalchian-Tabrizi, K. (2012) Collodictyon ― An Ancient Lineage in the Tree of Eukaryotes. Molecular Biology and Evolution 29: 1557-1568.

The most multicellular organisms, such as animals, mushrooms and land plants, are eukaryotes. Many unicellular eukaryotes such as yeasts, ciliates, amoebae and diatoms, are also present. Eukaryotes are composed of eukaryotic cell(s), in which the linear DNA form nucleosome/chromatin with many proteins and are located in the nucleus surrounded by double membranes (nuclear membrane). Thus the locations to transcribe and translate are divided in eukaryotes. All eukaryotes (probably) possess mitochondria or homologous organelles via endosymbiosis with α-proteobacteria like organism. Eukaryotic cells are also different from prokaryotic cells in the presence of developped membraneous organelles such as endoplasmic reticulum and Golgi body. Eukaryotes are basically heterotrophic, but the common ancestor of the Plantae acquired the chloroplast via endosymbiosis with a cyanobacterium. This photosynthetic organelle was transferred to various eukaryotes via secondary and tertiary endosymbioses.

Recent molecular phylogenetic studies show that there are some supergroups (e.g. Opisthokonta, Amoebozoa, Rhizaria, Alveolata) in the Eukarya. However, the interrelationships beteen these supergroups have not been clarified.


1: Vanella (Amoebozoa). 2: unidentified foraminifer (Rhizaria). 3: Cryptomonas (Hacrobia). 4: Ceriodaphnia (Opisthokonta). 5: Scytosiphon (Stramenopila). 6: Sedum (Plantae). 7: Paramecium (Alveolata). 8: Phacus (Excavata).
Life