研究支援ツール - 文献 - 詳細

文献詳細

文献
著者 Piao W., Suk-Hwan Kim, Byoung-Doo Lee, An G., Sakuraba Y., Nam-Chon Paek
タイトル Rice transcription factor OsMYB102 delays leaf senescence by down-regulating abscisic acid accumulation and signaling.
Abstract:
MYB-type transcription factors (TFs) play important roles in plant growth and development, and in the responses to several abiotic stresses. In rice (Oryza sativa), the roles of MYB-related TFs in leaf senescence are not well documented. Here, we examined rice MYB TF gene OsMYB102 and found that an OsMYB102 T-DNA activation-tagged line (termed OsMYB102-D), which constitutively expresses OsMYB102 under the control of four tandem repeats of the 35S promoter, and OsMYB102-overexpressing transgenic lines (35S:OsMYB102 and 35S:GFP-OsMYB102) maintain green leaves much longer than the wild-type under natural, dark-induced, and abscisic acid (ABA)-induced senescence conditions. Moreover, an OsMYB102 knockout mutant showed an accelerated senescence phenotype under dark-induced and ABA-induced leaf senescence conditions. Microarray analysis showed that a variety of senescence-associated genes (SAGs) were down-regulated in the OsMYB102-D line. Further studies demonstrated that overexpression of OsMYB102 controls the expression of SAGs, including genes associated with ABA degradation and ABA signaling (OsABF4, OsNAP, and OsCYP707A6), under dark-induced senescence conditions. OsMYB102 inhibits ABA accumulation by directly activating the transcription of OsCYP707A6, which encodes the ABA catabolic enzyme ABSCISIC ACID 8'-HYDROXYLASE. OsMYB102 also indirectly represses ABA-responsive genes, such as OsABF4 and OsNAP. Collectively, these results demonstrate that OsMYB102 plays a critical role in leaf senescence by down-regulating ABA accumulation and ABA signaling responses.
掲載誌 J. Exp. Bot.
Country South Korea
刊数 70(10)
ページ 2699-2715
発刊年 2019
PubMed ID 30825376
PubMed Central ID 6506775
DOI 10.1093/jxb/erz095
URL -
関連情報
遺伝子 ABA8OX2 BZIP72 MYB102 NAC58 NYC1 SGR
INSD -
系統 野生イネ
コアコレクション
-
突然変異系統(遺伝研 Collection) -
種子不稔系統 -
致死変異体系統 -
組織別発生段階
- 突然変異系統(遺伝子)
-
栽培イネ品種(遺伝研 Collection) -
組織別発生段階 -
/rice/oryzabase