Tools - Reference - Detail

Reference Detail

Reference
Author Zou X., Qin Z., Zhang C., Liu B., Liu J., Zhang C., Lin C., Li H., Zhao T.
Title Over-expression of an S-domain receptor-like kinase extracellular domain improves panicle architecture and grain yield in rice.
Abstract:
The S-domain receptor kinase (SRK) comprises a highly polymorphic subfamily of receptor-like kinases (RLKs) originally found to be involved in the self-incompatibility response in Brassica. Although several members have been identified to play roles in developmental control and disease responses, the correlation between SRKs and yield components in rice is still unclear. The utility of transgenic expression of a dominant negative form of SRK, OsLSK1 (Large spike S-domain receptor like Kinase 1), is reported here for the improvement of grain yield components in rice. OsLSK1 was highly expressed in nodes of rice and is a plasma membrane protein. The expression of OsLSK1 responded to the exogenous application of growth hormones, to abiotic stresses, and its extracellular domain could form homodimers or heterodimers with other related SRKs. Over-expression of a truncated version of OsLSK1 (including the extracellular and transmembrane domain of OsLSK1 without the intracellular kinase domain) increased plant height and improve yield components, including primary branches per panicle and grains per primary branch, resulting in about a 55.8% increase of the total grain yield per plot (10 plants). Transcriptional analysis indicated that several key genes involved in the GA biosynthetic and signalling pathway were up-regulated in transgenic plants. However, full-length cDNA over-expression and RNAi of OsLSK1 transgenic plants did not exhibit a detectable visual phenotype and possible reasons for this were discussed. These results indicate that OsLSK1 may act redundantly with its homologues to affect yield traits in rice and manipulation of OsLSK1 by the dominant negative method is a practicable strategy to improve grain yield in rice and other crops.
Journal J. Exp. Bot.
Country China
Volume
Pages
Year 2015
PubMed ID 26428067
PubMed Central ID -
DOI 10.1093/jxb/erv417
URL -
Relation
Gene D35 GID2 KO1 _
INSD -
Strain Wild Core Collection -
Induced Mutation Lines(NIG Collection) -
Sterile Seed Strain -
Lethal Embryo
Mutantion Strain
-
Stages in Each Organ
- Muant Lines (Gene)
-
Cultivated Varieties(NIG Collection) -
Stages in Each Organ -
/rice/oryzabase