Tools - Reference - Detail

Reference Detail

Reference
Author Li J., Qin R.Y., Li H., Xu R.F., Yang Y.C., Ni D.H., Ma H., Li L., Wei P.C., Yang J.B.
Title Low-Temperature-Induced Expression of rice ureidoglycolate amidohydrolase is Mediated by a C-Repeat/Dehydration-Responsive Element that Specifically Interacts with Rice C-Repeat-Binding Factor 3.
Abstract:
nitrogen recycling and redistribution are important for the environmental stress response of plants. In non-nitrogen-fixing plants, ureide metabolism is crucial to nitrogen recycling from organic sources. Various studies have suggested that the rate-limiting components of ureide metabolism respond to environmental stresses. However, the underlying regulation mechanism is not well understood. In this report, rice ureidoglycolate amidohydrolase (OsUAH), which is a recently identified enzyme catalyzing the final step of ureide degradation, was identified as low-temperature- (LT) but not abscisic acid- (ABA) regulated. To elucidate the LT regulatory mechanism at the transcriptional level, we isolated and characterized the promoter region of OsUAH (P OsUAH ). Series deletions revealed that a minimal region between -522 and -420 relative to the transcriptional start site was sufficient for the cold induction of P OsUAH . Detailed analyses of this 103-bp fragment indicated that a C-repeat/dehydration-responsive (CRT/DRE) element localized at position -434 was essential for LT-responsive expression. A rice C-repeat-binding factors/DRE-binding proteins 1 (CBFs/DREB1s) subfamily member, OsCBF3, was screened to specifically bind to the CRT/DRE element in the minimal region both in yeast one-hybrid assays and in in vitro gel-shift analysis. Moreover, the promoter could be exclusively trans-activated by the interaction between the CRT/DRE element and OsCBF3 in vivo. These findings may help to elucidate the regulation mechanism of stress-responsive ureide metabolism genes and provide an example of the member-specific manipulation of the CBF/DREB1 subfamily.
Journal Front Plant Sci
Country China
Volume 6
Pages 1011
Year 2015
PubMed ID 26617632
PubMed Central ID 4643140
DOI 10.3389/fpls.2015.01011
URL -
Relation
Gene DREB1A UAH
INSD -
Strain Wild Core Collection -
Induced Mutation Lines(NIG Collection) -
Sterile Seed Strain -
Lethal Embryo
Mutantion Strain
-
Stages in Each Organ
- Muant Lines (Gene)
-
Cultivated Varieties(NIG Collection) -
Stages in Each Organ -
/rice/oryzabase