Tools - Reference - Detail

Reference Detail

Reference
Author Wang L., Guo K., Li Y., Tu Y., Hu H., Wang B., Cui X., Peng L.
Title Expression profiling and integrative analysis of the CESA/CSL superfamily in rice.
Abstract:
The cellulose synthase and cellulose synthase-like gene superfamily (CESA/CSL) is proposed to encode enzymes for cellulose and non-cellulosic matrix polysaccharide synthesis in plants. Although the rice (Oryza sativa L.) genome has been sequenced for a few years, the global expression profiling patterns and functions of the OsCESA/CSL superfamily remain largely unknown. A total of 45 identified members of OsCESA/CSL were classified into two clusters based on phylogeny and motif constitution. Duplication events contributed largely to the expansion of this superfamily, with Cluster I and II mainly attributed to tandem and segmental duplication, respectively. With microarray data of 33 tissue samples covering the entire life cycle of rice, fairly high OsCESA gene expression and rather variable OsCSL expression were observed. While some members from each CSL family (A1, C9, D2, E1, F6 and H1) were expressed in all tissues examined, many of OsCSL genes were expressed in specific tissues (stamen and radicles). The expression pattern of OsCESA/CSL and OsBC1L which extensively co-expressed with OsCESA/CSL can be divided into three major groups with ten subgroups, each showing a distinct co-expression in tissues representing typically distinct cell wall constitutions. In particular, OsCESA1, -3 & -8 and OsCESA4, -7 & -9 were strongly co-expressed in tissues typical of primary and secondary cell walls, suggesting that they form as a cellulose synthase complex; these results are similar to the findings in Arabidopsis. OsCESA5/OsCESA6 is likely partially redundant with OsCESA3 for OsCESA complex organization in the specific tissues (plumule and radicle). Moreover, the phylogenetic comparison in rice, Arabidopsis and other species can provide clues for the prediction of orthologous gene expression patterns. The study characterized the CESA/CSL of rice using an integrated approach comprised of phylogeny, transcriptional profiling and co-expression analyses. These investigations revealed very useful clues on the major roles of CESA/CSL, their potentially functional complement and their associations for appropriate cell wall synthesis in higher plants.
Journal BMC Plant Biol.
Country China
Volume 10
Pages 282
Year 2010
PubMed ID 21167079
PubMed Central ID 3022907
DOI 10.1186/1471-2229-10-282
URL -
Relation
Gene BC6 BC7 CESA1 CESA10 CESA11 CESA2 CESA3 CESA5 CESA6 CESA7 CESA8 CSLA1 CSLA11 CSLA2 CSLA3 CSLA4 CSLA5 CSLA6 CSLA7 CSLA9 CSLC1 CSLC10 CSLC2 CSLC3 CSLC7 CSLC9 CSLD1 CSLD2 CSLD3 CSLD5 CSLE1 CSLE2 CSLE6 CSLF1 CSLF2 CSLF3 CSLF4 CSLF6 CSLF7 CSLF8 CSLF9 CSLH1 CSLH2 CSLH3 ND1
INSD -
Strain Wild Core Collection -
Induced Mutation Lines(NIG Collection) -
Sterile Seed Strain -
Lethal Embryo
Mutantion Strain
-
Stages in Each Organ
- Muant Lines (Gene)
-
Cultivated Varieties(NIG Collection) -
Stages in Each Organ -
/rice/oryzabase