Tools - Reference - Detail

Reference Detail

Reference
Author Matsushita A., Inoue H., Goto S., Nakayama A., Sugano S., Hayashi N., Takatsuji H.
Title The nuclear ubiquitin proteasome degradation affects WRKY45 function in the rice defense program.
Abstract:
The transcriptional activator WRKY45 plays a major role in the salicylic acid (SA)/benzothiadiazole-induced defense program in rice. Here, we show that the nuclear ubiquitin proteasome system (UPS) plays a role in regulating the function of WRKY45. Proteasome inhibitors induced accumulation of polyubiquitinated WRKY45 and transient upregulation of WRKY45 target genes in rice cells, suggesting that WRKY45 is constantly degraded by the UPS to suppress defense responses in the absence of defense signals. Mutational analysis of the nuclear localization signal (NLS) indicated that UPS-dependent WRKY45 degradation occurs in the nuclei. Interestingly, transcriptional activity of WRKY45 after SA treatment was impaired by proteasome inhibition. The same C-terminal region in WRKY45 was essential for both transcriptional activity and UPS-dependent degradation. These results suggest that UPS regulation also plays a role in transcriptional activity of WRKY45. It has been reported that AtNPR1, the central regulator of the SA pathway in Arabidopsis, is regulated by the UPS. We found that OsNPR1/NH1, the rice counterpart of NPR1, was not stabilized by proteasome inhibition under an uninfected condition. We discuss the differences in the post-translational regulation of the SA-pathway components between rice and Arabidopsis.
Journal Plant J.
Country Japan
Volume
Pages
Year 2012
PubMed ID 23013464
PubMed Central ID 3558880
DOI 10.1111/tpj.12035
URL -
Relation
Gene GSTU4 NH1 SPL7 WRKY45 WRKY62 _
INSD -
Strain Wild Core Collection -
Induced Mutation Lines(NIG Collection) -
Sterile Seed Strain -
Lethal Embryo
Mutantion Strain
-
Stages in Each Organ
- Muant Lines (Gene)
-
Cultivated Varieties(NIG Collection) -
Stages in Each Organ -
/rice/oryzabase