研究支援ツール - 文献 - 詳細

文献詳細

文献
著者 Christensen A.R., Malcomber S.T.
タイトル Duplication and diversification of the LEAFY HULL STERILE1 and Oryza sativa MADS5 SEPALLATA lineages in graminoid Poales.
Abstract:
ABSTRACT: Gene duplication and the subsequent divergence in function of the resulting paralogs via subfunctionalization and/or neofunctionalization is hypothesized to have played a major role in the evolution of plant form. The LEAFY HULL STERILE1 (LHS1) SEPALLATA (SEP) genes have been linked with the origin and diversification of the grass spikelet, but it is uncertain 1) when the duplication event that produced the LHS1 clade and its paralogous lineage Oryza sativa MADS5 (OSM5) occurred, and 2) how changes in gene structure and/or expression might have contributed to subfunctionalization and/or neofunctionalization in the two lineages. Phylogenetic relationships among 84 SEP genes were estimated using Bayesian methods. RNA expression patterns were inferred using in situ hybridization. The patterns of protein sequence and RNA expression evolution were reconstructed using maximum parsimony (MP) and maximum likelihood (ML) methods, respectively. Phylogenetic analyses mapped the LHS1/OSM5 duplication event to the base of the grass family. MP character reconstructions estimated a change from cytosine to thymine in the first codon position of the first amino acid after the Zea mays MADS3 (ZMM3) domain converted a glutamine to a stop codon in the OSM5 ancestor following the LHS1/OSM5 duplication event. RNA expression analyses of OSM5 co-orthologs in Avena sativa, Chasmanthium latifolium, Hordeum vulgare, Pennisetum glaucum, and Sorghum bicolor followed by ML reconstructions of these data and previously published analyses estimated a complex pattern of gain and loss of LHS1 and OSM5 expression in different floral organs and different flowers within the spikelet or inflorescence. Previous authors have reported that rice OSM5 and LHS1 proteins have different interaction partners indicating that the truncation of OSM5 following the LHS1/OSM5 duplication event has resulted in both partitioned and potentially novel gene functions. The complex pattern of OSM5 and LHS1 expression evolution is not consistent with a simple subfunctionalization model following the gene duplication event, but there is evidence of recent partitioning of OSM5 and LHS1 expression within different floral organs of A. sativa, C. latifolium, P. glaucum and S. bicolor, and between the upper and lower florets of the two-flowered maize spikelet.
掲載誌 Evodevo
Country USA
刊数 3
ページ 4
発刊年 2012
PubMed ID 22340849
PubMed Central ID 3305426
DOI -
URL -
関連情報
遺伝子 LHS1 MADS5 PAP2
INSD JN661627 JN661628 JN661629
系統 野生イネ
コアコレクション
-
突然変異系統(遺伝研 Collection) -
種子不稔系統 -
致死変異体系統 -
組織別発生段階
- 突然変異系統(遺伝子)
-
栽培イネ品種(遺伝研 Collection) -
組織別発生段階 -
/rice/oryzabase