Gene - Detail

Detail of Gene

Click here for feedback

Basic Information
CGSNL Gene Symbol GCC7
Gene Symbol Synonym HMA3, OsHMA3, OsHMA3a, OsHMA3n, osHMA3, OsHMP34, HMP34
CGSNL Gene Name GRAIN CD CONCENTRATION ON CHROMOSOME 7
Gene Name Synonym heavy metal ATPase 3, heavy metal transporter 3, heavy metal P-Type ATPase 3, heavy metal P1B-ATPase 3, grain Cd concentration on chromosome 7, Heavy metal-associated protein 34
Protein Name HEAVY METAL ATPASE 3
Allele GCC7PA64s, GCC793-11, OsHMA3W0, OsHMA3W4, OsHMA3Nip, OsHMA3-35, OsHMA3AD
Chromosome No. 7
Explanation AB559518, AB559519, AB559520, AB559521, AB559522. P1B-ATPase transporter. a vacuolar cadmium (Cd) transporter. TO:0006059: cadmium concentration. TO:0006059: cadmium content trait. GO:0071585 detoxification of cadmium ion.
Trait Class Tolerance and resistance
Tolerance and resistance - Stress tolerance
Expression
Sequence/Locus
cDNA Accession No. AB557931
MSU ID LOC_Os07g12900.1
RAP ID Os07g0232900
Links Oryzabase Chromosome View ( IRGSP 1.0 / Build5 )
RAP-DB ( IRGSP 1.0 / Build5 )
Related IDs List ( IRGSP 1.0 / Build5 )
INSD Accession List
(Test version)
-
Map
Locate(cM)
Link map Classical linkage map
References
Li J., Zhang M., Sun J., Mao X., Wang J., Liu H., Zheng H., Li X., Zhao H., Zou D.
Front Genet 2020  11  477
Heavy Metal Stress-Associated Proteins in Rice and <i>Arabidopsis</i>: Genome-Wide Identification, Phylogenetics, Duplication, and Expression Profiles Analysis.
Sui F., Zhao D., Zhu H., Gong Y., Tang Z., Huang X.Y., Zhang G., Zhao F.J.
J. Exp. Bot. 2019  70(10)  2857-2871
Map-based cloning of a new total loss-of-function allele of OsHMA3 causes high cadmium accumulation in rice grain.
Cao Z.Z., Lin X.Y., Yang Y.J., Guan M.Y., Xu P., Chen M.X.
BMC Plant Biol. 2019  19(1)  250
Gene identification and transcriptome analysis of low cadmium accumulation rice mutant (lcd1) in response to cadmium stress using MutMap and RNA-seq.
Liu C.L., Gao Z.Y., Shang L.G., Yang C.H., Ruan B.P., Zeng D.L., Guo L.B., Zhao F.J., Huang C.F., Qian Q.
J Integr Plant Biol 2019   
Natural variation in the promoter of OsHMA3 contributes to differential grain cadmium accumulation between Indica and Japonica rice.
Shao J.F., Xia J., Yamaji N., Shen R.F., Ma J.F.
J. Exp. Bot. 2018  69(10)  2743-2752
Effective reduction of cadmium accumulation in rice grain by expressing OsHMA3 under the control of the OsHMA2 promoter.
Ding Y., Gong S., Wang Y., Wang F., Bao H., Sun J., Cai C., Yi K., Chen Z., Zhu C.
Plant Physiol. 2018  177(4)  1691-1703
MicroRNA166 Modulates Cadmium Tolerance and Accumulation in Rice.
Yu C., Sun C., Shen C., Wang S., Liu F., Liu Y., Chen Y., Li C., Qian Q., Aryal B., Geisler M., Jiang de A., Qi Y.
Plant J. 2015  83(5)  818-30
The auxin transporter, OsAUX1, is involved in primary root and root hair elongation and in Cd stress responses in rice (Oryza sativa L.).
Kumagai S., Suzuki T., Tezuka K., Satoh-Nagasawa N., Takahashi H., Sakurai K., Watanabe A., Fujimura T., Akagi H.
FEBS Lett. 2014  588(5)  789-94
Functional analysis of the C-terminal region of the vacuolar cadmium-transporting rice OsHMA3.
Sasaki A., Yamaji N., Ma J.F.
J. Exp. Bot. 2014  65(20)  6013-21
Overexpression of OsHMA3 enhances Cd tolerance and expression of Zn transporter genes in rice.
Takahashi R., Bashir K., Ishimaru Y., Nishizawa N.K., Nakanishi H.
Plant Signal Behav 2012  7(12) 
The role of heavy-metal ATPases, HMAs, in zinc and cadmium transport in rice.
Miyadate,H., Adachi,S., Hiraizumi,A., Tezuka,K., Nakazawa,N., Kawamoto,T., Katou,K., Kodama,I., Sakurai,K., Takahashi,H., Satoh-Nagasawa,N., Watanabe,A., Fujimura,T. and Akagi,H.
New Phytol. 2011  189(1)  190-199
OsHMA3, a P1B-type of ATPase affects root-to-shoot cadmium translocation in rice by mediating efflux into vacuoles
Ueno D. , Koyama E. , Yamaji N. , Ma J.F.
J. Exp. Bot. 2011  62(7)  2265-72
Physiological, genetic, and molecular characterization of a high-Cd-accumulating rice cultivar, Jarjan.
Nocito,F.F., Lancilli,C., Dendena,B., Lucchini,G. and Sacchi,G.A.
Plant Cell Environ. 2011  34(6)  994-1008
Cadmium retention in rice roots is influenced by cadmium availability, chelation and translocation
Ishikawa S., Suzui N., Ito-Tanabata S., Ishii S., Igura M., Abe T., Kuramata M., Kawachi N., Fujimaki S.
BMC Plant Biol. 2011  11(1)  172
Real-time imaging and analysis of differences in cadmium dynamics in rice cultivars (Oryza sativa) using positron-emitting 107Cd tracer.
Oda K., Otani M., Uraguchi S., Akihiro T., Fujiwara T.
Bioscience, Biotechnology and Biochemistry 2011  75  1211-1213
Rice ABCG43 is Cd inducible and confers Cd tolerance on yeast
Ueno D,Yamaji N,Kono I,Huang CF,Ando T,Yano M,Ma JF
Proc. Natl. Acad. Sci. U.S.A. 2010  107(38)  16500-5
Gene limiting cadmium accumulation in rice.
Baxter I., Tchieu J., Michael R Sussman, Boutry M., Michael G Palmgren, Gribskov M., Jeffrey F Harper, Kristian B Axelsen
Plant Physiol. 2003  132(2)  618-28
Genomic comparison of P-type ATPase ion pumps in Arabidopsis and rice.
TextPresso Search Search textpresso for GCC7 ( Recent references may be retrievable, but without any warranty )
DB Reference
Gramene ID -
Ontologies
Gene Ontology membrane( GO:0016020 )
metal ion binding( GO:0046872 )
integral to membrane( GO:0016021 )
ATPase activity, coupled to transmembrane movement of ions, phosphorylative mechanism( GO:0015662 )
ATP biosynthetic process( GO:0006754 )
ATP binding( GO:0005524 )
response to cadmium ion( GO:0046686 )
vacuolar transport( GO:0007034 )
metal ion transmembrane transporter activity( GO:0046873 )
Trait Ontology -
Plant Ontology root( PO:0009005 )
Related Strains
-
Phenotype images
-
Last updated
Jul 3, 2020


/rice/oryzabase