遺伝子 - 詳細

詳細 - 遺伝子

フィードバックはこちら

Basic Information
CGSNL 遺伝子シンボル WFP
遺伝子シンボルシノニム OsSPL14, SPL14, IPA1, WFP/IPA1, OsSPL14/WFP/IPA1, OsIPA1, IPA1/OsSPL14
CGSNL 遺伝子名 WEALTHY FARMER'S PANICLE
遺伝子名シノニム IDEAL PLANT ARCHITECTURE 1, Ideal Plant Architecture 1, Ideal Plant Architecture1, Squamosa promoter-binding-like protein 14, SQUAMOSA PROMOTER BINDING PROTEIN-LIKE 14, Squamosa promoter binding protein like-14, IDEAL PLANT ARCHITECTURE1
タンパク質名 SQUAMOSA PROMOTER BINDING PROTEIN-LIKE 14
対立遺伝子 ipa1, spl14, OsSPL14WFP, OsSPL14ipa, OsSPL14-ST12, OsSPL14-Aikawa1, OsSPL14-Ri22, OsSPL14-Habataki, ipa1-1D, ipa1-2D, ipa1-3D, ipa1-4D, ipa1-10, ipa1-11, Ri22, ipa1-1D, ipa1-1
染色体番号 8
解説 A QTL increases primary branch number on chromosome 8. Q7EXZ2. GU136674. Regulate panicle branching and grain yield. a target gene of miR-156. GO:2000905: negative regulation of starch metabolic process. TO:0000992: gibberellin biosynthesis trait. PO:0025570: vascular leaf development stage. GO:1902347: response to strigolactone. TO: inflorescence axis length. TO:0001061: inflorescence axis thickness. TO:0001063: panicle inflorescence internode length. TO:0001062: number of panicle internodes.
形質クラス 栄養器官 - 葉
栄養器官 - 稈
種子
種子 - 生理的な特色 - 休眠性
耐性、抵抗性 - 病気抵抗性
耐性、抵抗性 - ストレス耐性
QTLの特性 - 収穫と生産性
QTLの特性 - 植物成長活動
生殖器官 - 穂、枝梗
発現
Sequence/Locus
cDNA Accession No. AK107191
MSU ID LOC_Os08g39890.1
RAP ID Os08g0509600
Links Oryzabase Chromosome View ( IRGSP 1.0 / Build5 )
RAP-DB ( IRGSP 1.0 / Build5 )
Related IDs List ( IRGSP 1.0 / Build5 )
INSD Accession List
(Test version)
-
マップ
位置情報(cM)
リンケージマップ Classical linkage map
文献
Xu T., Fu D., Xiong X., Zhu J., Feng Z., Liu X., Wu C.
PLoS Genet. 2023  19(4)  e1010698
OsbHLH067, OsbHLH068, and OsbHLH069 redundantly regulate inflorescence axillary meristem formation in rice.
Kellogg E.A.
Plant Cell 2022  34(7)  2518-2533
Genetic control of branching patterns in grass inflorescences.
Jia M., Meng X., Song X., Zhang D., Kou L., Zhang J., Jing Y., Liu G., Liu H., Huang X., Wang Y., Yu H., Li J.
Cell Discov 2022  8(1)  71
Chilling-induced phosphorylation of ipa1 by OsSAPK6 activates chilling tolerance responses in rice.
Cui D., Zhou H., Ma X., Lin Z., Sun L., Han B., Li M., Sun J., Liu J., Jin G., Wang X., Cao G., Deng X.W., He H., Han L.
Plant Commun 2022  3(3)  100325
Genomic insights on the contribution of introgressions from Xian/Indica to the genetic improvement of Geng/Japonica rice cultivars.
Huang L., Hua K., Xu R., Zeng D., Wang R., Dong G., Zhang G., Lu X., Fang N., Wang D., Duan P., Zhang B., Liu Z., Li N., Luo Y., Qian Q., Yao S., Li Y.
Plant Cell 2021   
The LARGE2-APO1/APO2 regulatory module controls panicle size and grain number in rice.
Pasion E.A., Badoni S., Misra G., Anacleto R., Parween S., Kohli A., Sreenivasulu N.
Plant Biotechnol. J. 2021   
OsTPR boosts the superior grains through increase in upper secondary rachis branches without incurring a grain quality penalty.
Dwivedi S.L., Reynolds M.P., Ortiz R.
iScience 2021  24(9)  102965
Mitigating tradeoffs in plant breeding.
Wang L., Ming L., Liao K., Xia C., Sun S., Chang Y., Wang H., Fu D., Xu C., Wang Z., Li X., Xie W., Ouyang Y., Zhang Q., Li X., Zhang Q., Xiao J., Zhang Q.
Mol Plant 2021  14(7)  1168-1184
Bract suppression regulated by the miR156/529-SPLs-NL1-PLA1 module is required for the transition from vegetative to reproductive branching in rice.
He Y., Zhu M., Li Z., Jiang S., He Z., Xu S., Chen X., Hu Z., Zhang Z.
Int J Mol Sci 2021  22(12) 
<i>IPA1</i> Negatively Regulates Early Rice Seedling Development by Interfering with Starch Metabolism via the GA and <i>WRKY</i> Pathways.
Cui Y., Cheng J., Ruan S., Qi P., Liu W., Bian H., Ye L., Zhang Y., Hu J., Dong G., Guo L., Zhang Y., Qian Q., Hu X.
J Integr Plant Biol 2020  62(12)  1839-1852
The heterochronic gene Oryza sativa LIKE HETEROCHROMATIN PROTEIN 1 modulates miR156b/c/i/e levels.
Zhang S., Zhu L., Shen C., Ji Z., Zhang H., Zhang T., Li Y., Yu J., Yang N., He Y., Tian Y., Wu K., Wu J., Harberd N.P., Zhao Y., Fu X., Wang S., Li S.
Plant Cell 2020   
Natural allelic variation in a modulator of auxin homeostasis improves grain yield and nitrogen use efficiency in rice.
Wang F., Han T., Song Q., Ye W., Song X., Chu J., Li J., Chen Z.J.
Plant Cell 2020  32(10)  3124-3138
The Rice Circadian Clock Regulates Tiller Growth and Panicle Development Through Strigolactone Signaling and Sugar Sensing.
Toriba T., Tokunaga H., Shiga T., Nie F., Naramoto S., Honda E., Tanaka K., Taji T., Itoh J.I., Kyozuka J.
Nat Commun 2019  10(1)  619
BLADE-ON-PETIOLE genes temporally and developmentally regulate the sheath to blade ratio of rice leaves.
Liu M., Shi Z., Zhang X., Wang M., Zhang L., Zheng K., Liu J., Hu X., Di C., Qian Q., He Z., Yang D.L.
Nat Plants 2019  5(4)  389-400
Inducible overexpression of Ideal Plant Architecture1 improves both yield and disease resistance in rice.
Duan J., Yu H., Yuan K., Liao Z., Meng X., Jing Y., Liu G., Chu J., Li J.
Proc. Natl. Acad. Sci. U.S.A. 2019  116(28)  14319-14324
Strigolactone promotes cytokinin degradation through transcriptional activation of <i>CYTOKININ OXIDASE/DEHYDROGENASE 9</i> in rice.
Zhu J., Li Y., Lin J., Wu Y., Guo H., Shao Y., Wang F., Wang X., Mo X., Zheng S., Yu H., Mao C.
Plant J. 2019   
crd1, an Xpo1 domain protein, regulates miRNA accumulation and crown root development in rice.
Duan E., Wang Y., Li X., Lin Q., Zhang T., Wang Y., Zhou C., Zhang H., Jiang L., Wang J., Lei C., Zhang X., Guo X., Wang H., Wan J.
Plant Cell 2019  31(5)  1026-1042
OsSHI1 Regulates Plant Architecture Through Modulating the Transcriptional Activity of IPA1 in Rice.
Abbai R., Singh V.K., Nachimuthu V.V., Sinha P., Selvaraj R., Vipparla A.K., Singh A.K., Singh U.M., Varshney R.K., Kumar A.
Plant Biotechnol. J. 2019   
Haplotype analysis of key genes governing grain yield and quality traits across 3K RG panel reveals scope for the development of tailor-made rice with enhanced genetic gains.
Gong R., Cao H., Zhang J., Xie K., Wang D., Yu S.
Plant J. 2018  94(1)  32-47
Divergent functions of the GAGA-binding transcription factor family in rice.
Jiang D., Chen W., Dong J., Li J., Yang F., Wu Z., Zhou H., Wang W., Zhuang C.
J. Exp. Bot. 2018  69(7)  1533-1543
Overexpression of miR164b-resistant OsNAC2 improves plant architecture and grain yield in rice.
Kim S.R., Ramos J.M., Hizon R.J.M., Ashikari M., Virk P.S., Torres E.A., Nissila E., Jena K.K.
Sci Rep 2018  8(1)  3833
Introgression of a functional epigenetic OsSPL14WFP allele into elite indica rice genomes greatly improved panicle traits and grain yield.
Wang J., Zhou L., Shi H., Chern M., Yu H., Yi H., He M., Yin J., Zhu X., Li Y., Li W., Liu J., Wang J., Chen X., Qing H., Wang Y., Liu G., Wang W., Li P., Wu X., Zhu L., Zhou J.M., Ronald P.C., Li S., Li J., Chen X.
Science 2018  361(6406)  1026-1028
A single transcription factor promotes both yield and immunity in rice.
Song X., Lu Z., Yu H., Shao G., Xiong J., Meng X., Jing Y., Liu G., Xiong G., Duan J., Yao X.F., Liu C.M., Li H., Wang Y., Li J.
Cell Res. 2017  27(9)  1128-1141
IPA1 functions as a downstream transcription factor repressed by D53 in strigolactone signaling in rice.
Wang S., Wu K., Qian Q., Liu Q., Li Q., Pan Y., Ye Y., Liu X., Wang J., Zhang J., Li S., Wu Y., Fu X.
Cell Res. 2017  27(9)  1142-1156
Non-canonical regulation of SPL transcription factors by a human OTUB1-like deubiquitinase defines a new plant type rice associated with higher grain yield.
Wang J., Yu H., Xiong G., Lu Z., Jiao Y., Meng X., Liu G., Chen X., Wang Y., Li J.
Plant Cell 2017  29(4)  697-707
Tissue-Specific Ubiquitination by IPA1 INTERACTING PROTEIN1 Modulates IPA1 Protein Levels to Regulate Plant Architecture in Rice.
Srikanth B., Subhakara Rao I., Surekha K., Subrahmanyam D., Voleti S.R., Neeraja C.N.
Gene 2016  576(1 Pt 3)  441-50
Enhanced expression of OsSPL14 gene and its association with yield components in rice (Oryza sativa) under low nitrogen conditions.
Huang X., Yang S., Gong J., Zhao Q., Feng Q., Zhan Q., Zhao Y., Li W., Cheng B., Xia J., Chen N., Huang T., Zhang L., Fan D., Chen J., Zhou C., Lu Y., Weng Q., Han B.
Nature 2016  537(7622)  629-633
Genomic architecture of heterosis for yield traits in rice.
Kim S.R., Ramos J., Ashikari M., Virk P.S., Torres E.A., Nissila E., Hechanova S.L., Mauleon R., Jena K.K.
Rice (N Y) 2016  9(1)  12
Development and validation of allele-specific SNP/indel markers for eight yield-enhancing genes using whole-genome sequencing strategy to increase yield potential of rice, Oryza sativa L.
Liu X., Zhou S., Wang W., Ye Y., Zhao Y., Xu Q., Zhou C., Tan F., Cheng S., Zhou D.X.
Plant Cell 2015  27(5)  1428-44
Regulation of histone methylation and reprogramming of gene expression in the rice inflorescence meristem.
Wang L., Sun S., Jin J., Fu D., Yang X., Weng X., Xu C., Li X., Xiao J., Zhang Q.
Proc. Natl. Acad. Sci. U.S.A. 2015  112(50)  15504-9
Coordinated regulation of vegetative and reproductive branching in rice.
Zhao M., Liu B., Wu K., Ye Y., Huang S., Wang S., Wang Y., Han R., Liu Q., Fu X., Wu Y.
PLoS ONE 2015  10(5)  e0126154
Regulation of OsmiR156h through Alternative Polyadenylation Improves grain yield in Rice.
Liu Q., Shen G., Peng K., Huang Z., Tong J., Kabir M.H., Wang J., Zhang J., Qin G., Xiao L.
J Integr Plant Biol 2015   
A T-DNA insertion mutant Osmtd1 was altered in architecture by upregulating MicroRNA156f in rice.
Shi Y., Liu X., Li R., Gao Y., Xu Z., Zhang B., Zhou Y.
J. Exp. Bot. 2014  65(12)  3055-69
Retention of OsNMD3 in the cytoplasm disturbs protein synthesis efficiency and affects plant development in rice.
Peng Y., Gao Z., Zhang B., Liu C., Xu J., Ruan B., Hu J., Dong G., Guo L., Liang G., Qian Q.
Plant Cell Rep. 2014  33(11)  1843-50
Fine mapping and candidate gene analysis of a major QTL for panicle structure in rice.
Liang W., Shang F., Lin Q., Lou C., Zhang J.
Gene 2014  537(1)  1-5
Tillering and panicle branching genes in rice.
Ikeda M., Miura K., Aya K., Kitano H., Matsuoka M.
Curr. Opin. Plant Biol. 2013  16(2)  213-20
Genes offering the potential for designing yield-related traits in rice.
Lu Z., Yu H., Xiong G., Wang J., Jiao Y., Liu G., Jing Y., Meng X., Hu X., Qian Q., Fu X., Wang Y., Li J.
Plant Cell 2013  25(10)  3743-59
Genome-Wide Binding Analysis of the Transcription Activator IDEAL PLANT ARCHITECTURE1 Reveals a Complex Network Regulating Rice Plant Architecture.
Xie K., Shen J., Hou X., Yao J., Li X., Xiao J., Xiong L.
Plant Physiol. 2012  158(3)  1382-94
Gradual increase of miR156 regulates temporal expression changes of numerous genes during leaf development in rice.
Shahinnia F., Druka A., Franckowiak J., Morgante M., Waugh R., Stein N.
Theoretical and Applied Genetics 2012  124  373-384
High resolution mapping of dense spike-ar (dsp.ar) to the genetic centromere of barley chromosome 7H
Luo L., Li W., Miura K., Ashikari M., Kyozuka J.
Plant Cell Physiol. 2012  53(10)  1793-801
Control of tiller growth of rice by OsSPL14 and Strigolactones, which work in two independent pathways.
Miura K, Ikeda M, Matsubara A, Song XJ, Ito M, Asano K, Matsuoka M, Kitano H, Ashikari M.
Nat Genet 2010  42(6)  545-9
OsSPL14 promotes panicle branching and higher grain productivity in rice
Jiao,Y., Wang,Y., Xue,D., Wang,J., Yan,M., Liu,G., Dong,G., Zeng,D., Lu,Z., Zhu,X., Qian,Q. and Li,J.
Nat Genet 2010  42(6)  541-544
Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice
Xie K, Wu C, Xiong L.
Plant Physiol. 2006  142(1)  280-293
Genomic organization, differential expression, and interaction of SQUAMOSA promoter-binding-like transcription factors and microRNA156 in rice.
TextPresso Search Search textpresso for WFP ( Recent references may be retrievable, but without any warranty )
DB Reference
Gramene ID -
オントロジー
Gene Ontology bract development( GO:0010432 )
nucleus( GO:0005634 )
regulation of transcription( GO:0045449 )
leaf development( GO:0048366 )
vegetative phase change( GO:0010050 )
response to cold( GO:0009409 )
seed development( GO:0048316 )
inflorescence development( GO:0010229 )
defense response to bacterium( GO:0042742 )
regulation of gibberellin biosynthetic process( GO:0010371 )
starch metabolic process( GO:0005982 )
negative regulation of seed germination( GO:0010187 )
response to biotic stimulus( GO:0009607 )
DNA binding( GO:0003677 )
transcription( GO:0006350 )
zinc ion binding( GO:0008270 )
hormone-mediated signaling( GO:0009755 )
defense response to fungus( GO:0050832 )
gibberellic acid mediated signaling( GO:0009740 )
Trait Ontology grain number( TO:0002759 )
inflorescence branching( TO:0000050 )
tillering ability( TO:0000329 )
nitrogen sensitivity( TO:0000011 )
tiller number( TO:0000346 )
filled grain number( TO:0000447 )
seed set percent( TO:0000455 )
panicle number( TO:0000152 )
blast disease( TO:0000074 )
bacterial blight disease resistance( TO:0000175 )
primary branch number( TO:0000547 )
growth and development trait( TO:0000357 )
biotic stress trait( TO:0000179 )
total soluble sugar content( TO:0000340 )
gibberellic acid content( TO:0002675 )
anatomy and morphology related trait( TO:0000017 )
grain yield( TO:0000396 )
gibberellic acid sensitivity( TO:0000166 )
leaf length( TO:0000135 )
leaf sheath length( TO:0002689 )
inflorescence development trait( TO:0000621 )
seed development trait( TO:0000653 )
cold tolerance( TO:0000303 )
leaf size( TO:0002637 )
Plant Ontology 0 seed germination stage( PO:0007057 )
inflorescence development stage( PO:0001083 )
seed development stage( PO:0001170 )
bract primordium( PO:0025487 )
leaf( PO:0025034 )
関連系統
-
形質画像
-
更新日
2023-10-16 10:49:41.334


/rice/oryzabase