Basic Information
|
CGSNL Gene Symbol
|
MADS23
|
Gene Symbol Synonym
|
OsMADS23, MADS-23
|
CGSNL Gene Name
|
MADS BOX GENE 23
|
Gene Name Synonym
|
MADS box gene23, MADS-box transcription factor 23
|
Protein Name
|
MADS-BOX TRANSCRIPTION FACTOR 23
|
Allele
|
OsMADS23R, osmads23, osmads23-1, osmads23-2
|
Chromosome No.
|
8
|
Explanation
|
Q6VAM4. one of the miR444 target genes. GO:2000280: regulation of root development. GO:1900458: negative regulation of brassinosteroid mediated signaling pathway. GO:2000280: regulation of root development. GO:1902005: regulation of proline biosynthetic process. GO:0090333: regulation of stomatal closure. TO:0020095: stomatal process related trait.
|
Trait Class
|
Vegetative organ - Culm
Vegetative organ - Root
Coloration - Chlorophyll
Tolerance and resistance - Disease resistance
Tolerance and resistance - Stress tolerance
Character as QTL - Germination
Other
|
Expression
|
|
Sequence/Locus
|
cDNA Accession No.
|
AY345220
|
MSU ID
|
LOC_Os08g33488.1
|
RAP ID
|
Os08g0431900
|
Links
|
Oryzabase Chromosome View
(
IRGSP 1.0
/
Build5
)
RAP-DB
(
IRGSP 1.0
/
Build5
)
Related IDs List (
IRGSP 1.0
/
Build5
)
|
INSD Accession List (Test version)
|
Link to INSD Accession List
|
Map
|
Locate(cM)
|
|
Link map
|
Classical linkage map
|
References
|
Lv Q., Li X., Jin X., Sun Y., Wu Y., Wang W., Huang J.
PLoS Genet. 2022 18(11) e1010520
Rice OsPUB16 modulates the 'SAPK9-OsMADS23-OsAOC' pathway to reduce plant water-deficit tolerance by repressing ABA and JA biosynthesis.
|
Li X., Yu B., Wu Q., Min Q., Zeng R., Xie Z., Huang J.
PLoS Genet. 2021 17(8) e1009699
OsMADS23 phosphorylated by SAPK9 confers drought and salt tolerance by regulating ABA biosynthesis in rice.
|
Jiao X., Wang H., Yan J., Kong X., Liu Y., Chu J., Chen X., Fang R., Yan Y.
Plant Physiol. 2020 182(3) 1454-1466
Promotion of BR Biosynthesis by miR444 Is Required for Ammonium-Triggered Inhibition of Root Growth.
|
Wei J., Zheng Y., Feng H., Qu H., Fan X., Yamaji N., Ma J.F., Xu G.
J. Exp. Bot. 2018 69(5) 1095-1107
OsNRT2.4 encodes a dual-affinity nitrate transporter and functions in nitrate-regulated root growth and nitrate distribution in rice.
|
Wang H., Jiao X., Kong X., Hamera S., Wu Y., Chen X., Fang R., Yan Y.
Plant Physiol. 2016 170(4) 2365-77
A Signaling Cascade from miR444 to RDR1 in Rice Antiviral RNA Silencing Pathway.
|
Liu X., Zhou S., Wang W., Ye Y., Zhao Y., Xu Q., Zhou C., Tan F., Cheng S., Zhou D.X.
Plant Cell 2015 27(5) 1428-44
Regulation of histone methylation and reprogramming of gene expression in the rice inflorescence meristem.
|
Yan Y., Wang H., Hamera S., Chen X., Fang R.
Plant J. 2014 78(1) 44-55
miR444a has multiple functions in the rice nitrate-signaling pathway.
|
Puig J., Meynard D., Khong G.N., Pauluzzi G., Guiderdoni E., Gantet P.
Gene Expr. Patterns 2013 13(5-6) 160-170
Analysis of the expression of the AGL17-like clade of MADS-box transcription factors in rice.
|
Pandey D.M., Kim S.R.
Journal of Plant Biology 2012 55 489-497
Identification and expression analysis of hypoxia stress inducible CCCH-type zinc finger protein genes in rice
|
Arora R., Agarwal P., Ray S., Ashok Kumar Singh, Vijay Pal Singh, Akhilesh K Tyagi, Kapoor S.
BMC Genomics 2007 8 242
MADS-box gene family in rice: genome-wide identification, organization and expression profiling during reproductive development and stress.
|
Lee,S., Kim,J., Son,J.S., Nam,J., Jeong,D.H., Lee,K., Jang,S., Yoo,J., Lee,J., Lee,D.Y., Kang,H.G. and An,G.
Plant Cell Physiol. 2003 44(12) 1403-1411
Systematic Reverse Genetic Screening of T-DNA Tagged Genes in Rice for Functional Genomic Analyses: MADS-box Genes as a Test Case.
|
TextPresso Search
|
Search textpresso for MADS23
( Recent references may be retrievable, but without any warranty )
|
DB Reference
|
Gramene ID
|
-
|
Ontologies
|
Gene Ontology
|
transcription factor activity( GO:0003700 )
nucleus( GO:0005634 )
transcription( GO:0006350 )
regulation of transcription, DNA-dependent( GO:0006355 )
cellular response to nitrogen starvation( GO:0006995 )
sequence-specific DNA binding( GO:0043565 )
defense response to virus( GO:0051607 )
response to ammonium ion( GO:0060359 )
negative regulation of brassinosteroid biosynthetic process( GO:0010423 )
brassinosteroid mediated signaling( GO:0009742 )
root development( GO:0048364 )
response to water deprivation( GO:0009414 )
response to salt stress( GO:0009651 )
response to osmotic stress( GO:0006970 )
response to abscisic acid stimulus( GO:0009737 )
positive regulation of abscisic acid biosynthetic process( GO:0010116 )
proline biosynthetic process( GO:0006561 )
response to oxidative stress( GO:0006979 )
stomatal movement( GO:0010118 )
regulation of seed germination( GO:0010029 )
shoot development( GO:0048367 )
response to jasmonic acid stimulus( GO:0009753 )
regulation of jasmonic acid biosynthetic process( GO:0080141 )
abscisic acid mediated signaling( GO:0009738 )
jasmonic acid mediated signaling pathway( GO:0009867 )
|
Trait Ontology
|
abiotic stress trait( TO:0000168 )
viral disease resistance( TO:0000148 )
root length( TO:0000227 )
root development trait( TO:0000656 )
brassinosteroid content( TO:0002676 )
drought tolerance( TO:0000276 )
salt tolerance( TO:0006001 )
osmotic response sensitivity( TO:0000095 )
abscisic acid sensitivity( TO:0000615 )
proline content( TO:0006002 )
oxidative stress( TO:0002657 )
chlorophyll content( TO:0000495 )
abscisic acid content( TO:0002667 )
shoot development trait( TO:0000654 )
hydrogen peroxide content( TO:0000605 )
|
Plant Ontology
|
root( PO:0009005 )
root development stage( PO:0007520 )
0 seed germination stage( PO:0007057 )
shoot system development stage( PO:0025527 )
|
Related Strains
|
-
|
Phenotype images
|
-
|
Last updated
|
May 31, 2023
|