Basic Information
|
CGSNL Gene Symbol
|
NAS1
|
Gene Symbol Synonym
|
OsNAS1
|
CGSNL Gene Name
|
NICOTIANAMINE SYNTHASE 1
|
Gene Name Synonym
|
rice nicotianamine synthase1, NA synthase gene 1, Nicotianamine synthase 1, S-adenosyl-L-methionine:S-adenosyl-L-methionine:S-adenosyl-methionine 3-amino-3-carboxypropyltransferase 1
|
Protein Name
|
NICOTIANAMINE SYNTHASE 1
|
Allele
|
|
Chromosome No.
|
3
|
Explanation
|
The nicotianamine is a crucial components of the iron acqusition apparatus of graminaeceous plant. AB046401. D24418. AB021746. EC=2.5.1.43 A2XFU5(indica). Q0DSH9(japonica). TO:0006049: iron concentration. TO:0020089: iron content trait. TO:0006053: zinc concentration. GO:1990641: response to iron ion starvation.
|
Trait Class
|
Biochemical character
Tolerance and resistance - Stress tolerance
|
Expression
|
|
Sequence/Locus
|
cDNA Accession No.
|
AK112069
|
MSU ID
|
LOC_Os03g19427.1
|
RAP ID
|
Os03g0307300
|
Links
|
Oryzabase Chromosome View
(
IRGSP 1.0
/
Build5
)
RAP-DB
(
IRGSP 1.0
/
Build5
)
Related IDs List (
IRGSP 1.0
/
Build5
)
|
INSD Accession List (Test version)
|
Link to INSD Accession List
|
Map
|
Locate(cM)
|
|
Link map
|
Classical linkage map
|
References
|
Regon P., Dey S., Rehman M., Pradhan A.K., Chowra U., Tanti B., Talukdar A.D., Panda S.K.
Front Plant Sci 2022 13 798580
Transcriptomic Analysis Revealed Reactive Oxygen Species Scavenging Mechanisms Associated With Ferrous Iron Toxicity in Aromatic Keteki Joha Rice.
|
Kobayashi T., Maeda K., Suzuki Y., Nishizawa N.K.
Rice (N Y) 2022 15(1) 54
Simultaneous Enhancement of iron Deficiency Tolerance and Iron Accumulation in Rice by Combining the Knockdown of OsHRZ Ubiquitin Ligases with the Introduction of Engineered Ferric-chelate Reductase.
|
Cao L., Gao Y., Yu J., Niu S., Zeng J., Yao Q., Wang X., Bu Z., Xu T., Liu X., Zhu Y.
Plant Physiol. Biochem. 2021 158 275-283
Streptomyces hygroscopicus OsiSh-2-induced mitigation of Fe deficiency in rice plants.
|
Yang A., Li Q., Chen L., Zhang W.H.
J. Exp. Bot. 2020
A rice small GTPase, OsRab6a, is involved in the regulation of grain yield and iron nutrition in response to CO2 enrichment.
|
Liang G., Zhang H., Li Y., Pu M., Yang Y., Li C., Lu C., Xu P., Yu D.
J Integr Plant Biol 2020 62(5) 668-689
Oryza sativa FER-LIKE FE DEFICIENCY-INDUCED TRANSCRIPTION FACTOR (OsFIT/OsbHLH156) interacts with OsIRO2 to regulate iron homeostasis.
|
Wang S., Li L., Ying Y., Wang J., Shao J.F., Yamaji N., Whelan J., Ma J.F., Shou H.
New Phytol. 2020 225(3) 1247-1260
A transcription factor OsbHLH156 regulates Strategy II iron acquisition through localising IRO2 to the nucleus in rice.
|
Kobayashi T., Ozu A., Kobayashi S., An G., Jeon J.S., Nishizawa N.K.
Plant Mol. Biol. 2019 101(4-5) 471-486
OsbHLH058 and OsbHLH059 transcription factors positively regulate iron deficiency responses in rice.
|
Aung M.S., Kobayashi T., Masuda H., Nishizawa N.K.
Physiol Plant 2018
Rice HRZ ubiquitin ligases are crucial for response to excess iron.
|
Shi X., Chen S., Peng Y., Wang Y., Chen J., Hu Z., Wang B., Li A., Chao D., Li Y., Teng S.
J Integr Plant Biol 2018 60(2) 112-129
TSC1 enables plastid development under dark conditions, contributing to rice adaptation to transplantation shock.
|
Wang B., Wei H., Xue Z., Zhang W.H.
Ann. Bot. 2017 119(6) 945-956
Gibberellins regulate iron deficiency-response by influencing iron transport and translocation in rice seedlings (Oryza sativa).
|
Zhang H., Li Y., Yao X., Liang G., Yu D.
Plant Physiol. 2017 175(1) 543-554
POSITIVE REGULATOR OF IRON HOMEOSTASIS1, OsPRI1, Facilitates Iron Homeostasis.
|
Andrés-Bordería A., Andrés F., Garcia-Molina A., Perea-García A., Domingo C., Puig S., Peñarrubia L.
Plant Mol. Biol. 2017
Copper and ectopic expression of the Arabidopsis transport protein COPT1 alter iron homeostasis in rice (Oryza sativa L.).
|
Masuda H., Shimochi E., Hamada T., Senoura T., Kobayashi T., Aung M.S., Ishimaru Y., Ogo Y., Nakanishi H., Nishizawa N.K.
PLoS ONE 2017 12(3) e0173441
A new transgenic rice line exhibiting enhanced ferric iron reduction and phytosiderophore production confers tolerance to low iron availability in calcareous soil.
|
Kobayashi T., Itai R.N., Senoura T., Oikawa T., Ishimaru Y., Ueda M., Nakanishi H., Nishizawa N.K.
Plant Mol. Biol. 2016 91(4-5) 533-47
Jasmonate signaling is activated in the very early stages of iron deficiency responses in rice roots.
|
Moreno-Moyano LT., Bonneau J.P., Sánchez-Palacios JT., Tohme J., Johnson A.A.
Front Plant Sci 2016 7 1463
Association of Increased Grain Iron and Zinc Concentrations with Agro-morphological Traits of Biofortified Rice.
|
Tan S., Liu F., Pan X.X., Zang Y.P., Jin F., Zu W.X., Qi X.T., Xiao W., Yin L.P.
Sci Rep 2016 6 25485
CSN6, a subunit of the COP9 signalosome, is involved in early response to iron deficiency in Oryza sativa.
|
Yang A., Zhang W.H.
Plant Cell Physiol. 2016 57(6) 1271-80
A Small GTPase, OsRab6a, is Involved in the Regulation of Iron Homeostasis in Rice.
|
Bashir K., Ishimaru Y., Itai R.N., Senoura T., Takahashi M., An G., Oikawa T., Ueda M., Sato A., Uozumi N., Nakanishi H., Nishizawa N.K.
Plant Mol. Biol. 2015 88(1-2) 165-76
Iron deficiency regulated OsOPT7 is essential for iron homeostasis in rice.
|
Hu B., Wang W., Deng K., Li H., Zhang Z., Zhang L., Chu C.
Front Plant Sci 2015 6 188
MicroRNA399 is involved in multiple nutrient starvation responses in rice.
|
Agarwal S., Tripura Venkata VG., Kotla A., Mangrauthia S.K., Neelamraju S.
Gene 2014 546(2) 430-6
Expression patterns of QTL based and other candidate genes in Madhukar × Swarna RILs with contrasting levels of iron and zinc in unpolished rice grains.
|
Kobayashi T.a b, Nakanishi Itai R.c, Nishizawa N.K.b
Rice 2014 7
Iron deficiency responses in rice roots
|
Yang A., Li Y., Xu Y., Zhang W.H.
J. Exp. Bot. 2013 64(16) 5009-20
A receptor-like protein RMC is involved in regulation of iron acquisition in rice.
|
Anuradha K., Agarwal S., Rao Y.V., Rao K.V., Viraktamath B.C., Sarla N.
Gene 2012 508(2) 233-40
Mapping QTLs and candidate genes for iron and zinc concentrations in unpolished rice of Madhukar×Swarna RILs.
|
Suzuki M., Bashir K., Inoue H., Takahashi M., Nakanishi H., Nishizawa N.K.
Rice (N Y) 2012 5 9
Accumulation of starch in Zn-deficient rice
|
Kobayashi T., Naoko K Nishizawa
Annu Rev Plant Biol 2012 63 131-52
Iron uptake, translocation, and regulation in higher plants.
|
Wang L., Ying Y., Narsai R., Ye L., Zheng L., Tian J., Whelan J., Shou H.
Plant Cell Environ. 2012 36(1) 224-36.
Identification of OsbHLH133 as a regulator of iron distribution between roots and shoots in Oryza sativa.
|
Johnson A.A., Kyriacou B., Callahan D.L., Carruthers L., Stangoulis J., Lombi E., Tester M.
PLoS ONE 2011 6(9) e24476
Constitutive overexpression of the OsNAS gene family reveals single-gene strategies for effective iron- and zinc-biofortification of rice endosperm.
|
Ishimaru Y., Masuda H., Bashir K., Inoue H., Tsukamoto T., Takahashi M., Nakanishi H., Aoki N., Hirose T., Ohsugi R., Naoko K Nishizawa
Plant J. 2010 62(3) 379-90
Rice metal-nicotianamine transporter, OsYSL2, is required for the long-distance transport of iron and manganese.
|
Kobayashi T,Itai RN,Ogo Y,Kakei Y,Nakanishi H,Takahashi M,Nishizawa NK
Plant J. 2009 60(6) 948-61
The rice transcription factor IDEF1 is essential for the early response to iron deficiency, and induces vegetative expression of late embryogenesis abundant genes.
|
Narayanan NN, Vasconcelos MW, Grusak MA.
Plant Physiol. Biochem. 2007 45(5) 277-86.
Expression profiling of Oryza sativa metal homeostasis genes in different rice cultivars using a cDNA macroarray.
|
Suzuki,M., Takahashi,M., Tsukamoto,T., Watanabe,S., Matsuhashi,S., Yazaki,J., Kishimoto,N., Kikuchi,S., Nakanishi,H., Mori,S. and Nishizawa,N.K.
Plant J. 2006 48(1) 85-97
Biosynthesis and secretion of mugineic acid family phytosiderophores in zinc-deficient barley
|
Ogo,Y., Itai,R.N., Nakanishi,H., Inoue,H., Kobayashi,T., Suzuki,M., Takahashi,M., Mori,S. and Nishizawa,N.K.
J. Exp. Bot. 2006 57(11) 2867-2878
Isolation and characterization of IRO2, a novel iron-regulated bHLH transcription factor in graminaceous plants
|
Kobayashi,T., Suzuki,M., Inoue,H., Itai,R.N., Takahashi,M., Nakanishi,H., Mori,S. and Nishizawa,N.K.
J. Exp. Bot. 2005 56 1305-1316
Expression of iron-acquisition-related genes in iron-deficient rice is co-ordinately induced by partially conserved iron-deficiency-responsive elements
|
Nozoye T., Reiko Nakanishi Ita, Nagasaki S., Takahashi M., Nakanishi H., Mori S., Naoko K Nishikawa
Soil Sci Plant Nutr 2004 50(7) 1125-1131
Diurnal Changes in the Expression of Genes That Participate in Phytosiderophore Synthesis in Rice
|
Inoue, H., K. Higuchi, M. Takahashi, H. Nakanishi, S. Mori and N.K. Nishizawa
Plant J. 2003 36 (3) 366-381
Three rice nicotianamine synthase genes, OsNAS1, OsNAS2, and OsNAS3 are expressed in cells involved in long-distance transport of iron and differentially regulated by iron.
|
Higuchi,K., Watanabe,S., Takahashi,M., Kawasaki,S., Nakanishi,H., Nishizawa,N.K. and Mori,S.
Plant J. 2001 25(2) 159-167
Nicotianamine synthase gene expression differs in barley and rice under Fe-deficient conditions.
|
Higuchi K, Suzuki K, Nakanishi H, Yamaguchi H, Nishizawa NK, Mori S.
Plant Physiol. 1999 119(2) 471-480
Cloning of nicotianamine synthase genes, novel genes involved in the biosynthesis of phytosiderophores.
|
TextPresso Search
|
Search textpresso for NAS1
( Recent references may be retrievable, but without any warranty )
|
DB Reference
|
Gramene ID
|
GR:0080047
|
Ontologies
|
Gene Ontology
|
response to iron(II) ion( GO:0010040 )
iron ion homeostasis( GO:0055072 )
response to symbiotic bacterium( GO:0009609 )
response to starvation( GO:0042594 )
iron ion transport( GO:0006826 )
nicotianamine synthase activity( GO:0030410 )
cellular amino acid biosynthetic process( GO:0008652 )
cellular response to iron ion starvation( GO:0010106 )
cellular response to zinc ion starvation( GO:0034224 )
carboxylic acid biosynthetic process( GO:0046394 )
nicotianamine biosynthetic process( GO:0030418 )
response to gibberellin stimulus( GO:0009739 )
response to iron ion( GO:0010039 )
response to copper ion( GO:0046688 )
|
Trait Ontology
|
iron sensitivity( TO:0000224 )
chlorophyll content( TO:0000495 )
zinc sensitivity( TO:0000351 )
gibberellic acid sensitivity( TO:0000166 )
copper sensitivity( TO:0000021 )
|
Plant Ontology
|
companion cell( PO:0000071 )
root hair cell( PO:0000256 )
root cortex( PO:0000258 )
vascular bundle( PO:0005020 )
root epidermis( PO:0006036 )
protoxylem( PO:0000272 )
bulliform cell( PO:0004001 )
leaf sheath( PO:0020104 )
vascular leaf( PO:0009025 )
root cap( PO:0020123 )
root stele( PO:0020124 )
root( PO:0009005 )
lateral root( PO:0020121 )
pericycle( PO:0006203 )
|
Related Strains
|
-
|
Phenotype images
|
-
|
Last updated
|
Feb 10, 2023
|