Basic Information
|
CGSNL Gene Symbol
|
LHS1
|
Gene Symbol Synonym
|
OsMADS1, LHS, lhs1, lhs, lhs2, op, nsr, MADS1, LHS1/OsMADS1, Lhs1, AFO, OsLHS1, OsLG3b, LG3b, qLGY3, LGY3, DLN80, OsDLN80, OLR, OsOLR, GW3p6, OsGW3p6, OsMADS1GW3p6, MADS1GW3p6, qLGY3/OsLG3b/GW3p6
|
CGSNL Gene Name
|
LEAFY HULL STERILE 1
|
Gene Name Synonym
|
MADS box gene1, leafy hull sterile1, leafy hull sterile 1, LEAFY HULL STERILE1, naked seed rice, over developed palea, MADS-box transcription factor 1, Protein LEAFY HULL STERILE 1, Protein SEPALLATA-like, abnormal floral organs, long grain 3b, DLN repressor 80, DLN motif protein 80, Oat-like rice
|
Protein Name
|
MADS-BOX TRANSCRIPTION FACTOR 1
|
Allele
|
osmads1-z, ago, mads1/nsr, osmads1, qlgy3, lgy3, lhs1-z, OsMADS1Olr, osmads1ko, Olr, OsMADS1lgy3
|
Chromosome No.
|
3
|
Explanation
|
One of the MADS box genes causing flower organ deformation. This is the same gene as leafy hull sterile 1 (lhs1), being located on chromosome 3 between two markers, RG100 and RZ313.Deformation of lemma and palea showing leafy structures accompanied by various malformations of floral organs and low seed setting. A2XDY1(indica). Q10PZ9(japonica). GRO:0007151; 6.1-flowering stage ; GRO:0007158; spikelet development. L34271. EU327204-EU327254 (Oryza rufipogon, Oryza nivara). GU727114-GU727133 (wild rice species). FJ811125-FJ811165 (Oryza glaberrima, Oryza barthii, Oryza nivara). DQ223344-DQ223351, DQ223383-DQ223397, DQ223402, DQ223403, DQ223414-DQ223418, DQ911248, DQ911249 (wild rice species). EF069904-EF069973 (O. sativa and wild rice species). JQ414694-JQ414737 (wild rice species). a SEP-like gene. TO:20109: vascular bundle development trait. TO:0000869: glume anatomy and morphology trait. TO:0000975: grain width. PO:0006000; hull (sensu Poaceae). PO:0006384; gynoecium (sensu Poaceae). PO:0006441; stamen (sensu Poaceae). TO:0000862: floral organ morphology trait. TO:1000024: palea morphology trait. TO:0000856: lodicule length. TO:0000847: panicle inflorescence morphology trait. TO:1000023: lemma morphology trait. GO:2000904: regulation of starch metabolic process. GO:0062052: starch granule initiation.
|
Trait Class
|
Reproductive organ - Pollination, fertilization, fertility - Male sterility
Reproductive organ - Spikelet, flower, glume, awn
Seed - Morphological traits - Grain shape
Seed - Physiological traits - Storage substances
Reproductive organ - panicle
Seed - Morphological traits - Endosperm
Character as QTL - Yield and productivity
Reproductive organ - Heading date
Character as QTL - Grain quality
Reproductive organ - Pollination, fertilization, fertility
|
Expression
|
spikelet - Sp3 - Formation of lemma primordium
spikelet - Sp4 - Formation of palea primordium
|
Sequence/Locus
|
cDNA Accession No.
|
AK070981
AK069728
|
MSU ID
|
LOC_Os03g11614.1
|
RAP ID
|
Os03g0215400
|
Links
|
Oryzabase Chromosome View
(
IRGSP 1.0
/
Build5
)
RAP-DB
(
IRGSP 1.0
/
Build5
)
Related IDs List (
IRGSP 1.0
/
Build5
)
|
INSD Accession List (Test version)
|
Link to INSD Accession List
|
Map
|
Locate(cM)
|
50.5
|
Link map
|
Classical linkage map
|
References
|
Wang C., Wang Z., Cai Y., Zhu Z., Yu D., Hong L., Wang Y., Lv W., Zhao Q., Si L., Liu K., Han B.
Plant Biotechnol. J. 2024 22(6) 1669-1680
A higher-yield hybrid rice is achieved by assimilating a dominant heterotic gene in inbred parental lines.
|
Bai F., Ma H., Cai Y., Shahid M.Q., Zheng Y., Lang C., Chen Z., Wu J., Liu X., Wang L.
Plant Physiol. 2023
Natural Allelic Variation in GRAIN SIZE.AND WEIGHT 3 of Wild Rice Regulates the GRAIN SIZE.and Weight.
|
Ta K.N., Shimizu-Sato S., Agata A., Yoshida Y., Taoka K.I., Tsuji H., Akagi T., Tanizawa Y., Sano R., Nosaka-Takahashi M., Suzuki T., Demura T., Toyoda A., Nakamura Y., Sato Y.
Plant J. 2023 115(1) 175-189
A leaf-emanated signal orchestrates grain size and number in response to maternal resources.
|
Gu Z., Gong J., Zhu Z., Li Z., Feng Q., Wang C., Zhao Y., Zhan Q., Zhou C., Wang A., Huang T., Zhang L., Tian Q., Fan D., Lu Y., Zhao Q., Huang X., Yang S., Han B.
Nat. Genet. 2023 55(10) 1745-1756
Structure and function of rice hybrid genomes reveal genetic basis and optimal performance of heterosis.
|
Zhang H., Wang F., Song W., Yang Z., Li L., Ma Q., Tan X., Wei Z., Li Y., Li J., Yan F., Chen J., Sun Z.
Nat Commun 2023 14(1) 3011
Different viral effectors suppress hormone-mediated antiviral immunity of rice coordinated by OsNPR1.
|
Li Y., Wu S., Huang Y., Ma X., Tan L., Liu F., Lv Q., Zhu Z., Hu M., Fu Y., Zhang K., Gu P., Xie D., Sun H., Sun C.
Nat Commun 2023 14(1) 3098
OsMADS17 simultaneously increases grain number and grain weight in rice.
|
Liu Z., Li P., Yu L., Hu Y., Du A., Fu X., Wu C., Luo D., Hu B., Dong H., Jiang H., Ma X., Huang W., Yang X., Tu S., Li H.
Int J Mol Sci 2023 24(9)
<i>OsMADS1</i> Regulates Grain Quality, Gene Expressions, and Regulatory Networks of Starch and Storage Protein Metabolisms in Rice.
|
Liu E., Zhu S., Du M., Lyu H., Zeng S., Liu Q., Wu G., Jiang J., Dang X., Dong Z., Hong D.
Gene 2023 883 147635
LAX1, functioning with MADS-box genes, determines normal palea development in rice.
|
Mehra P., Pandey B.K., Verma L., Prusty A., Singh A.P., Sharma S., Malik N., Bennett M.J., Parida S.K., Giri J., Tyagi A.K.
Plant Direct 2022 6(5) e401
<i>OsJAZ11</i> regulates spikelet and seed development in rice.
|
Prakash S., Rai R., Zamzam M., Ahmad O., Peesapati R., Vijayraghavan U.
Front Plant Sci 2022 13 865928
OsbZIP47 Is an Integrator for Meristem Regulators During Rice Plant Growth and Development.
|
Li M., Fu D., Xu T., Wu C.
Int J Mol Sci 2021 22(15)
<i>VPB1</i> Encoding BELL-like homeodomain Protein Is Involved in Rice Panicle Architecture.
|
Kannan P., Chongloi G.L., Majhi B.B., Basu D., Veluthambi K., Vijayraghavan U.
Planta 2021 253(2) 39
Characterization of a new rice OsMADS1 null mutant generated by homologous recombination-mediated gene targeting.
|
Zhuang H., Hong-Lei Wang, Zhang T., Xiao-Qin Zeng, Chen H., Zhong-Wei Wang, Zhang J., Zheng H., Tang J., Ying-Hua Ling, Zheng-Lin Yang, Guang-Hua He, Yun-Feng Li
Plant Cell 2020 32(2) 392-413
<i>NONSTOP GLUMES1</i> Encodes a C2H2 Zinc Finger Protein That Regulates Spikelet Development in Rice.
|
Li P., Li H., Liu Z., Zhuang Y., Wei M., Gu Y., Liu Y., Sun X., Tang Y., Yue L., Lu L., Luo D., Huang W., Tu S., Wang S.
Rice (N Y) 2020 13(1) 73
Characterization of the 'Oat-like rice' Caused by a Novel Allele OsMADS1Olr Reveals Vital Importance of OsMADS1 in Regulating grain shape in Oryza sativa L.
|
Osnato M., Matias-Hernandez L., Aguilar-Jaramillo AE., Kater M.M., Pelaz S.
Plant Physiol. 2020 183(4) 1663-1680
Genes of the <i>RAV</i> Family Control Heading Date and Carpel Development in Rice.
|
Singh P., Mathew I.E., Verma A., Tyagi A.K., Agarwal P.
Int J Mol Sci 2019 20(7)
Analysis of Rice Proteins with DLN repressor Motif/S.
|
Wang A., Hou Q., Si L., Huang X., Luo J., Lu D., Zhu J., Shangguan Y., Miao J., Xie Y., Wang Y., Zhao Q., Feng Q., Zhou C., Li Y., Fan D., Lu Y., Tian Q., Wang Z., Han B.
Plant Physiol. 2019 180(4) 2077-2090
The PLATZ Transcription Factor GL6 Affects Grain Length and Number in Rice.
|
Yu J., Miao J., Zhang Z., Xiong H., Zhu X., Sun X., Pan Y., Liang Y., Zhang Q., Abdul Rehman RM., Li J., Zhang H., Li Z.
Plant Biotechnol. J. 2018
Alternative splicing of OsLG3b controls grain length and yield in japonica rice.
|
Liu Q., Han R., Wu K., Zhang J., Ye Y., Wang S., Chen J., Pan Y., Li Q., Xu X., Zhou J., Tao D., Wu Y., Fu X.
Nat Commun 2018 9(1) 852
G-protein betagamma subunits determine grain size through interaction with MADS-domain transcription factors in rice.
|
Song S., Wang G., Hu Y., Liu H., Bai X., Qin R., Xing Y.
J. Exp. Bot. 2018 69(18) 4283-4293
OsMFT1 increases spikelets per panicle and delays heading date in rice by suppressing Ehd1, FZP and SEPALLATA-like genes.
|
Ke S., Liu X.J., Luan X., Yang W., Zhu H., Liu G., Zhang G., Wang S.
Gene 2018 675 285-300
Genome-wide transcriptome profiling provides insights into panicle development of rice (Oryza sativa L.).
|
Bakshi A., Moin M., Datla R., Kirti P.B.
Plant Signal Behav 2017 0
Expression Profiling of Development Related Genes in Rice Plants Ectopically Expressing AtTOR.
|
Yu H., Ruan B., Wang Z., Ren D., Zhang Y., Leng Y., Zeng D., Hu J., Zhang G., Zhu L., Gao Z., Chen G., Guo L., Chen W., Qian Q.
Front Plant Sci 2017 8 486
Fine Mapping of a Novel defective glume 1 (dg1) Mutant, Which Affects Vegetative and Spikelet Development in Rice.
|
Zhang B., Wu S., Zhang Y., Xu T., Guo F., Tang H., Li X., Wang P., Qian W., Xue Y.
PLoS Genet. 2016 12(7) e1006152
A High Temperature-Dependent Mitochondrial Lipase EXTRA GLUME1 Promotes Floral Phenotypic Robustness against Temperature Fluctuation in Rice (Oryza sativa L.).
|
Liu M., Li H., Su Y., Li W., Shi C.
Front Plant Sci 2016 7 1006
g1/ELE Functions in the Development of Rice Lemmas in Addition to Determining Identities of Empty Glumes.
|
Bai X., Huang Y., Mao D., Wen M., Zhang L., Xing Y.
Sci Rep 2016 6 19022
Regulatory role of FZP in the determination of panicle branching and spikelet formation in rice.
|
Dai Z., Wang J., Zhu M., Miao X., Shi Z.
Front Plant Sci 2016 7 1891
OsMADS1 Represses microRNA172 in Elongation of Palea/Lemma Development in Rice.
|
Khanday I., Das S., Chongloi G.L., Bansal M., Grossniklaus U., Vijayraghavan U.
Plant Physiol. 2016 172(1) 372-88
Genome-Wide Targets Regulated by the OsMADS1 Transcription Factor Reveals Its DNA Recognition Properties.
|
Ren D., Rao Y., Wu L., Xu Q., Li Z., Yu H., Zhang Y., Leng Y., Hu J., Zhu L., Gao Z., Dong G., Zhang G., Guo L., Zeng D., Qian Q.
J Integr Plant Biol 2015
The pleiotropic ABNORMAL FLOWER AND DWARF1 affects plant height, floral development and grain yield in rice.
|
Wang Y., Xu M.Y., Liu J.P., Wang M.G., Yin H.Q., Tu J.M.
J Zhejiang Univ Sci B 2014 15(7) 624-37
Molecular identification and interaction assay of the gene (OsUbc13) encoding a ubiquitin-conjugating enzyme in rice.
|
Cai Q., Yuan Z., Chen M., Yin C., Luo Z., Zhao X., Liang W., Hu J., Zhang D.
Nat Commun 2014 5 3476
Jasmonic acid regulates spikelet development in rice.
|
Marathi B., Jena K.K.
Euphytica 2014 201 1-14
Floral traits to enhance outcrossing for higher hybrid seed production in rice: present status and future prospects
|
Zhang J., Tang W., Huang Y., Niu X., Zhao Y., Han Y., Liu Y.
J. Exp. Bot. 2014
Down-regulation of a LBD-like gene, OsIG1, leads to occurrence of unusual double ovules and developmental abnormalities of various floral organs and megagametophyte in rice.
|
Nayar S., Kapoor M., Kapoor S.
J. Exp. Bot. 2014 65(18) 5339-50
Post-translational regulation of rice MADS29 function: homodimerization or binary interactions with other seed-expressed MADS proteins modulate its translocation into the nucleus.
|
Yan D., Zhou Y., Ye S., Zeng L., Zhang X., He Z.
Sci China Life Sci 2013 56(3) 275-83
Beak-shaped grain 1/TRIANGULAR HULL 1, a DUF640 gene, is associated with grain shape, size and weight in rice.
|
Khanday I., Yadav S.R., Vijayraghavan U.
Plant Physiol. 2013 161(4) 1970-83
Rice LHS1/OsMADS1 Controls Floret Meristem Specification by Coordinated Regulation of Transcription Factors and Hormone Signaling Pathways.
|
Duan Y., Xing Z., Diao Z., Xu W., Li S., Du X., Wu G., Wang C., Lan T., Meng Z., Liu H., Wang F., Wu W., Xue Y.
Plant Mol. Biol. 2012 80(4-5) 429-42
Characterization of OsMADS6-5, a null allele, reveals that OsMADS6 is a critical regulator for early flower development in rice (Oryza sativa L.).
|
Christensen A.R., Malcomber S.T.
Evodevo 2012 3 4
Duplication and diversification of the LEAFY HULL STERILE1 and Oryza sativa MADS5 SEPALLATA lineages in graminoid Poales.
|
Ai,B., Wang,Z.S. and Ge,S.
Evolution 2012 66(10) 3302-3310
Genome size is not correlated with effective population size in the oryza species
|
Li,Z.M., Zheng,X.M. and Ge,S.
Theor. Appl. Genet. 2011 123(1) 21-31
Genetic diversity and domestication history of African rice (Oryza glaberrima) as inferred from multiple gene sequences
|
Yadav S.R., Khanday I., Majhi B.B., Veluthambi K., Vijayraghavan U.
Plant Cell Physiol. 2011 52(12) 2123-35
Auxin-Responsive OsMGH3, a Common Downstream Target of OsMADS1 and OsMADS6, Controls Rice Floret Fertility.
|
Zheng,X.M. and Ge,S.
Mol. Ecol. 2010 19(12) 2439-2454
Ecological divergence in the presence of gene flow in two closely related Oryza species (Oryza rufipogon and O. nivara)
|
Cui R,Han J,Zhao S,Su K,Wu F,Du X,Xu Q,Chong K,Theissen G,Meng Z
Plant J. 2010 61(5) 767-81
Functional conservation and diversification of class E floral homeotic genes in rice (Oryza sativa).
|
Wang K., Tang D., Hong L., Xu W., Huang J., Li M., Gu M., Xue Y., Cheng Z.
PLoS Genet. 2010 6(1) e1000818
DEP and AFO regulate reproductive habit in rice.
|
Zhou,H.F., Zheng,X.M., Wei,R.X., Second,G., Vaughan,D.A. and Ge,S.
Theor. Appl. Genet. 2008 117(7) 1181-1189
Contrasting population genetic structure and gene flow between Oryza rufipogon and Oryza nivara
|
Zhang,L.B. and Ge,S.
Mol. Biol. Evol. 2007 24(3) 769-783
Multilocus analysis of nucleotide variation and speciation in Oryza officinalis and its close relatives
|
Zhu,Q., Zheng,X., Luo,J., Gaut,B.S. and Ge,S.
Mol. Biol. Evol. 2007 24(3) 875-888
Multilocus analysis of nucleotide variation of Oryza sativa and its wild relatives: severe bottleneck during domestication of rice
|
Shitsukawa N,Tahira C,Kassai K,Hirabayashi C,Shimizu T,Takumi S,Mochida K,Kawaura K,Ogihara Y,Murai K
Plant Cell 2007 19 1723-37
Genetic and epigenetic alteration among three homoeologous genes of a class E MADS box gene in hexaploid wheat.
|
Arora R., Agarwal P., Ray S., Ashok Kumar Singh, Vijay Pal Singh, Akhilesh K Tyagi, Kapoor S.
BMC Genomics 2007 8 242
MADS-box gene family in rice: genome-wide identification, organization and expression profiling during reproductive development and stress.
|
Chen ZX, Wu JG, Ding WN, Chen HM, Wu P, Shi CH.
Planta. 2006 223(5) 882-90
Morphogenesis and molecular basis on naked seed rice, a novel homeotic mutation of OsMADS1 regulating transcript level of AP3 homologue in rice.
|
Prasad K., Parameswaran S., Vijayraghavan U.
The Plant journal : for cell and molecular biology 2005 43(6) 915-28
OsMADS1, a rice MADS-box factor, controls differentiation of specific cell types in the lemma and palea and is an early-acting regulator of inner floral organs.
|
Agrawal GK, Abe K, Yamazaki M, Miyao A, Hirochika H.
Plant Mol. Biol. 2005 59(1) 125-135
Conservation of the E-function for floral organ identity in rice revealed by the analysis of tissue culture-induced loss-of-function mutants of the OsMADS1 gene.
|
Malcomber, S.T., and E.A. Kellogg
Plant Cell 2004 16 1692-1706
Heterogeneous expression patterns and separate roles of the SEPALLATA gene LEAFY HULL STERILE1 in grasses.
|
Komatsu,M., Chujo,A., Nagato,Y., Shimamoto,K. and Kyozuka,J.
Development 2003 130(16) 3841-3850
FRIZZY PANICLE is required to prevent the formation of axillary meristems and to establish floral meristem identity in rice spikelets.
|
Lee,S., Kim,J., Son,J.S., Nam,J., Jeong,D.H., Lee,K., Jang,S., Yoo,J., Lee,J., Lee,D.Y., Kang,H.G. and An,G.
Plant Cell Physiol. 2003 44(12) 1403-1411
Systematic Reverse Genetic Screening of T-DNA Tagged Genes in Rice for Functional Genomic Analyses: MADS-box Genes as a Test Case.
|
Jeon,J.S., Jang,S., Lee,S., Nam,J., Kim,C., Lee,S.H., Chung,Y.Y., Kim,S.R., Lee,Y.H., Cho,Y.G. and An,G.
Plant Cell 2000 12(6) 871-884
leafy hull sterile1 is a homeotic mutation in a rice MADS box gene affecting rice flower development.
|
Lim J, Moon YH, An G, Jang SK.
Plant Mol. Biol. 2000 44(4) 513-527
Two rice MADS domain proteins interact with OsMADS1.
|
Aida, T., S. Niikura and I. Takamure
Breeding Science 1997 47(Suppl. 1) 49
Genetic interactions between mutant genes concerned with spikelet morphogenesis in rice.
|
Aida, T., S. Niikura & I. Takamure
RGN 1997 14 50-52
Genic interaction between lhs (leafy hull sterile) and some mutant genes related to spikelet formation.
|
Takamure, I. and T. Kinoshita
Rice Genetics III. IRRI, Manila, Philippines. 1996 387-390.
Genetic analysis of morphological mutations in rice spikelets.
|
Chung,Y.Y., Kim,S.R., Finkel,D., Yanofsky,M.F. and An,G.
Plant Mol. Biol. 1994 26(2) 657-665
Early flowering and reduced apical dominance result from ectopic expression of a rice MADS box gene.
|
Takamure, I.
Mem. Fac. Agr. Hokkaido Univ. 1994 19(2) 151-202.
Genetic studies on several mutants related to morphological and physiological characters in rice.
|
Maekawa, M., I. Takamure and T. Kinoshita
Rice Genetics. II. IRRI, Manila, Philippines. 1991 111-120.
Gene mapping of some morphological traits and chlorophyll deficiency in rice.
|
Hsieh, R.M., C. Pai and H.K. Wu
RGN 1985 2 71
Gene for naked-grain rice.
|
Iwata, N., H. Satoh and T. Omura
Japan. J. Breed. 1985 35(Suppl. 1) 204-205.
Linkage studies in rice.On the loci of some marker genes locating on the chromosome 5.
|
Khush, G.S. and A.L. Librojo
RGN 1985 2 71-72.
Naked seed rice (NSR) in allelic to op and lhs.
|
Kinoshita, T.
In Biology of Rice. S. Tsunoda and N. Takahashi eds. JSSP/Elsevier, Tokyo. 1984 187-274.
Gene analysis and linkage map.
|
Iwata, N., T. Omura and H. Satoh
Japan. J. Breed. 1978 28(Suppl. 1) 170-171.
Linkage studies in rice. The sequence of genes at the eight and eleventh linkage groups.
|
Kinoshita, T., Y. Hidano and M. Takahashi
Mem. Fac. Agr. Hokkaido Univ. 1977 10(3) 247-268.
A mutant 'long hull sterile' found out in the rice variety, Sorachi. -Genetical studies on rice plant, LXVII-.
|
Iwata, N. and T. Omura
Japan. J. Breed. 1968 18(Suppl. 2) 69-70.
Linkage analysis by reciprocal translocation method in rice.IV.
|
TextPresso Search
|
Search textpresso for LHS1
( Recent references may be retrievable, but without any warranty )
|
DB Reference
|
Gramene ID
|
GR:0060502
|
Ontologies
|
Gene Ontology
|
cell differentiation( GO:0030154 )
regulation of transcription( GO:0045449 )
regulation of cell proliferation( GO:0042127 )
sequence-specific DNA binding( GO:0043565 )
multicellular organismal development( GO:0007275 )
transcription factor activity( GO:0003700 )
transcription( GO:0006350 )
flower development( GO:0009908 )
cell fate specification( GO:0001708 )
DNA binding( GO:0003677 )
maintenance of floral meristem identity( GO:0010076 )
protein binding( GO:0005515 )
nucleus( GO:0005634 )
floral organ development( GO:0048437 )
regulation of cell differentiation( GO:0045595 )
regulation of transcription, DNA-dependent( GO:0006355 )
floral meristem determinacy( GO:0010582 )
inflorescence development( GO:0010229 )
specification of floral organ identity( GO:0010093 )
seed development( GO:0048316 )
embryo sac development( GO:0009553 )
cell fate commitment( GO:0045165 )
starch metabolic process( GO:0005982 )
|
Trait Ontology
|
seed length to width ratio( TO:0000411 )
grain yield per plant( TO:0000449 )
heterosis( TO:0000355 )
glume length( TO:0020033 )
flower organ size( TO:0002600 )
floral organ development trait( TO:0006022 )
endosperm color( TO:0000487 )
endosperm related trait( TO:0000575 )
starch grain shape( TO:0002656 )
amylopectin content( TO:0000097 )
amylose content( TO:0000196 )
endosperm storage protein content( TO:0002653 )
starch content( TO:0000696 )
male sterility( TO:0000437 )
spikelet anatomy and morphology trait( TO:0000657 )
seed set percent( TO:0000455 )
carpel anatomy and morphology trait( TO:0006012 )
floret anatomy and morphology trait( TO:0000274 )
carpel shape( TO:0006037 )
lodicule anatomy and morphology trait( TO:0006009 )
pistil number( TO:0002659 )
lodicule number( TO:0006010 )
palea number( TO:0000209 )
lemma number( TO:0000208 )
glume number( TO:0006029 )
floral organ number( TO:0006038 )
1000-dehulled grain weight( TO:0000592 )
seed thickness( TO:0000304 )
seed width( TO:0000149 )
seed length( TO:0000146 )
grain thickness( TO:0000399 )
embryosac abortion( TO:0000416 )
lemma and palea anatomy and morphology trait( TO:0000079 )
grain length( TO:0000734 )
grain yield( TO:0000396 )
inflorescence development trait( TO:0000621 )
grain size( TO:0000397 )
seed quality( TO:0000162 )
grain shape( TO:0002730 )
chalky endosperm( TO:0000266 )
panicle length( TO:0000040 )
flowering time( TO:0002616 )
floret number( TO:0000670 )
pistil anatomy and morphology trait( TO:0000223 )
lemma length( TO:0000650 )
lemma and palea pubescence( TO:0000417 )
pollen free( TO:0000245 )
flower development trait( TO:0000622 )
inflorescence anatomy and morphology trait( TO:0000373 )
cooked grain elongation( TO:0000377 )
glume cover( TO:0001000 )
panicle type( TO:0000089 )
stamen number( TO:0000225 )
days to flower( TO:0000344 )
spikelet sterility( TO:0000436 )
flower anatomy and morphology trait( TO:0000499 )
lemma shape( TO:0000614 )
plant height( TO:0000207 )
|
Plant Ontology
|
glume( PO:0009039 )
lodicule development stage( PO:0001049 )
palea development stage( PO:0001048 )
caryopsis hull( PO:0006000 )
gynoecium( PO:0009062 )
stamen( PO:0009029 )
seed( PO:0009010 )
flower development stage( PO:0007615 )
lemma( PO:0009037 )
lodicule( PO:0009036 )
palea( PO:0009038 )
seed development stage( PO:0001170 )
inflorescence development stage( PO:0001083 )
flower meristem( PO:0000229 )
carpel( PO:0009030 )
plant embryo( PO:0009009 )
endosperm( PO:0009089 )
aleurone layer( PO:0005360 )
flower( PO:0009046 )
inflorescence( PO:0009049 )
spikelet( PO:0009051 )
spikelet floret( PO:0009082 )
lemma development stage( PO:0001047 )
|
Related Strains
|
-
|
Phenotype images
|
-
|
Last updated
|
Aug 29, 2024
|