CATALOGUE OF GENE SYMBOLS FOR WHEAT: 2012 SUPPLEMENT

R.A. McIntosh¹, J. Dubcovsky², W.J. Rogers³, C. Morris⁴, R. Appels⁵, X.C. Xia⁶

¹The University of Sydney, Plant Breeding Institute Cobbitty, PMB 11, Camden, N.S.W., Australia, 2570. <u>bobm@camden.usyd.edu.au</u>

²Department of Plant Sciences & Howard Hughes Medical Institute, University of California, Davis, CA 95616, U.S.A <u>jdubcovsky@ucdavis.edu</u>

³Catedra de Genetica y Fitotecnia, DCBA y B, Facultad de Agronomia, CIISAS, CIC-BIOLAB AZUL, Universidad Nacional del Centro de la Provincia de Buenos Aires, Argentina. Av. Rep. Italia 780, CC47 73 Azul, Provincia de Buenos Aires, Argentina. CONICET-INBA-CEBB-MdP. rogers@faa.unicen.edu.ar

⁴USDA-ARS Western Wheat Laboratory, Pullman, WA 99164-6394, U.S.A. morris@wsu.edu

⁵Molecular Plant Breeding Research Centre, Biological Sciences, Murdoch University and Department of Agriculture, Locked Bag 4, Bentley Delivery Centre W.A. 6983, Australia. <u>rappels@agric.wa.gov.au</u>

⁶Institute of Crop Science, National Wheat Improvement Centre, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South St, Beijing 100081, China. xiaxianchun@yahoo.com

The most recent version of the Catalogue, compiled for the 11th International Wheat Genetics Symposium held in Brisbane, Australia, and the 2009, 2010 and 2011 Supplements (Annual Wheat Newsletter 55, 56 and 57) are available on the Komugi and GrainGenes websites. It was not included as part of the IWGS proceedings and therefore cannot be cited as part of them.

Laboratory Designators

Iwa iSelect 9,000 SNP wheat chip A

Wheat SNP consortium

Eduard Akhunov

Department of Plant Pathology

Plant Sciences Center

4024 Throckmorton

Kansas State University

Manhattan, KS 66506

USA

e-mail: eakhunov@ksu.edu

Uhgl Bai, GH

USDA Hard Winter Wheat Genotyping Laboratory

USDA-ARS Hard Winter Wheat Genetics Research Unit

Manhattan

KS 66506

USA

e-mail: gbai@ksu.edu

Morphological and Physiological Traits

10. Boron Tolerance

<i>Bo1</i> .	v:	Additional genotypes {10833,10834}.					
	tv:	Kalka {10834}; Linzhi 10834}; Niloticum {10834}; additional					
		genotypes {10834}.					
	ma:	Add: Co-dominant PCR marker AWW5L7 co-segregated with Bo1 and					
		was predictive of the responses of 94 Australian wheat genotypes					
		{10833}; <i>Xbarc32-7B</i> – 2.4 cM – <i>Xaww5L7</i> – 1.2 cM – <i>Xbarc182</i> -					
		7B/Bo1 – 1.2 cM – Xpsr680/Xmwg2062-7B {10833}; Xbarc32-7B – 2.6					
		cM – Xaww7L7/Bo1 {10834}.					

QTL: Cranbrook (moderately tolerant) / Halberd (tolerant): DH population; QTLs for tolerance were identified on chromosomes 7B and 7D {10832}.

Add note:

For a review of boron tolerance in wheat, see {10835}.

At be beginning of the last paragraph in the exiting file insert: <u>Boron efficiency</u>

11. Cadmium Uptake

Low uptake is dominant.

Cdu1.	Add:	"; corrected to 5BL {10894}."	tv:	Fanfarran {10894}.				
	bin:	5BL9 0.76-0.79.						
	ma:	Xfcp2-5B-12 cM $- Cdul - 3$ cM	- ScOPC20 {10894};					
		<i>ScOPC20/Xrz575-5B/XBG608197 – </i> 0.5 cM –						
		<i>Cdu1/XbF293297/XBF474090/Os03g53590 (Xusw15-5B)</i> – 0.2 cM –						
		XBF474164 {10895}. Cdu1 is close to Vrn-B1 {10895}.						

cdu1. **tv:** DT369 {10894}.

12. Chlorophyll Abnormalities

12.2. Chlorina

cn-	Ala.		i:	ANK-32 {10820}.			
cn-Ald. itv:			itv:	ANW5A-7A {10820}.			
Two mutants in diploid wheat are reported in {10820}.							
	ma: Hexaploid wheat: $Xhbg234-7A - 8.0 \text{ cM} - cn-A1 - 4.3 \text{ cM} -$						
	Xgwm282/Xgwm332-7A {10820}; Tetraploid wheat: Xbarc192-7A – 19.5 cM –						
		<i>cn-A1</i> – 1	1.4 cl	M – <i>Xgwm63-7A</i> {10820}; Diploid wheat: <i>Xgwm748-7A</i> – 29.2			

17. Dormancy (Seed) 17.1. Vivipary

Insert above the present entry for Vp-A1.

Alleles of *Vp-A1* were recognised using STS marker A17-19 {10919}.

<i>Vp-A1</i> {10919}. 3AL {10919}.						
<i>Vp-A1a</i> {10919}.	v:	Nongda 311 { 10919}.	c:	599 bp {10919}.		
Higher germination	n index					
<i>Vp-A1b</i> {10919}.	v:	Wanxianbaimaizi {109	19}; Ya	annong 15 {10919}.		
	c:	596 bp {10919}.				
Lower germination	index					
<i>Vp-A1c</i> {10919}.	v:	Jing 411 {10919}.	2:	593 bp {10919}.		
Higher germination	n index					
	n	1	•			
<i>Vp-A1d</i> {10919}.	v:	Xiaoyan 6 {10919}.	c:	590 bp {10919}.		
Lower germination	index	•				
	-					
<i>Vp-A1e</i> {10919}.	v:	Zhengzhou 6 {10919};	Bainor	ng 64 {10919}.		
	c:	581 bp {10919}.				
Higher germination	Higher germination index.					
<i>Vp-A1f</i> {10919}.	v:	Yumai 34 { 10919}	c:	545 bp {10919}.		
Higher germination	n index	•				

Insert after the present Vp-B1 entry.

<i>Vp-D1</i> {10919}.	3DL	{10919}.	AJ	400714 {10919}.		
<i>Vp-D1a</i> {10919}.			v:	81 Chinese wheat cultivars { 10919}.		
(c:	5 pairs of	primer	rs {10919}.		

17.2. Pre-harvest sprouting

Continue under the Rio Blanco cross: *Qphs.psweru-3A* was fine mapped to a 1.4 cM region flanked by two AFLP markers and was tightly linked to *Xbarc57-3A* and seven other AFLP markers {10893}.

26. Glaucousness (Waxiness/Glossiness)

26.1. Genes for glaucousness

26.2. Epistatic inhibitors of glaucousness

Add to existing comment:

Although maps constructed from three tetraploid crosses suggested that w1 and Iw1 ^{DIC} could	l
be at different loci, allelism of $w1$, $W1$ and $Iw1^{DIC} = Vir$ remain unresolved {10815}.	

40. Height

40.1. Reduced Height : GA-insensitive

At end of section add:are given in {10404} and those for eastern and central U.S. eastern and central winter wheat cultivars are given in {10868}.

40.2. Reduced Height : GA-sensitive

Rht8.

Add at end of section: Allele sizes for *Xgwm261* in U.S. eastern and central wheat winter cultivars are given in {10868}.

Rht14. To the note add ',10818' to the reference.

Rht16. To the note add ',10818' to the reference.

Rht18. To the note add ',10818' to the reference.

Rht22 {1	0857}.	7AS {10857}.	tv:	Aiganfanmai {10857}.
	ma: Xgw	<i>m</i> 471-7A – 29.5 cM –	<i>Rht22</i> –	20.1 cM – Xgwm350-7A {10857}.

46. Leaf Tip Necrosis

Ltn. c: Putative ABC transporter {10862}.

48. Male Sterility

48.1. Chromosomal

<i>Ms1376</i> {10814}.	Sterility is dominant.	v:	TR1376A {10814}.				
Male fertile counterpart: TR1376B {10814}.							
Ms1376 was discovered among progenies of a transgenic family of Xinong 1376							
containing leaf senesc	ence-inhibiting gene P_{SAC}	12-II	PT {10814}.				

54. Nuclear-Cytoplasmic Compatibility Enhancers

scs.	Add:	scs^{ti} {10878}.	ma:	<i>Xbcd1449.2-1A</i> – 0.6 cM – <i>scs</i> – 2.3
				cM – <i>Xbcd12-1A</i> {10878}.

60. Red Grain Colour

Correct and add to the first paragraph: '.....Himi & Noda {10107} provided evidence that the *R* genes were wheat forms of Myb-type transcription factors (*Tamyb10-3A*, *Tamyb10-3B* and *Tamyb10-3D*). Genetic evidence is provided in {10838}'.

<i>R-A1</i> .	v:	Rio Blanco {10839}.	
	ma:	<i>Xwmc559-3A</i> – 16.3 cM – <i>R-A1/Xgwm155-3A</i> – 4.5 cM – <i>Xwmc153-3A</i> {10839}.	

	R-Ala.	ma:	Based on Tamyb10-A1 sequences this allele in CS lacks the ability to			
			bind DNA due to deletion of the first half of the R2 repeat of the			
			MYB domain {10838}. The <i>R</i> - <i>A</i> 1 <i>a</i> allele in Norin 17 has a 2.2 bp			
			insertion in the second intron that appears to prevent transcription			
			{10838}.			
		•				
<i>R-B1</i> .	1. ma: $Xgwm4010-3B - 1.6 \text{ cM} - R-B1 - 4.6 \text{ cM} - Xgwm980-3B \{10839\}.$					
<i>R-B1a.</i> m		ma:	Based on the Tamyb10-B1 sequence this allele in CS has a 19 bp			
			deletion of the CCG repeat region causing a frameshift mutation			
			{10838}.			
<i>R-D1</i> .	1. ma: Xgwm2		$3D - 15.4 \text{ cM} - R - D1 - 3.2 \text{ cM} - Xgwm 4306 - 3D \{10839\}.$			
<i>R-D1a.</i> ma:		ma:	No Tamyb10-D1 sequence was detected in lines with this allele			
			indicating that it may be a deletion {10838}.			

Add note at the end of this section:

Functional markers based on Tamyb10 sequences are given in {10838}.

62. Response to Photoperiod

The following sections are updated on the listing in the 2009 supplement. *Ppd-A1*.

	Ppd-A1a {10612}.	tv:	GS100, Kofa (1027-bp deletion in the promoter)			
			{10612}; GS105, Svevo (1117-bp deletion in the			
			promoter) {10612}. A survey of <i>Ppd-A1</i> alleles is			
			reported in {10915}.			
GS	GS100 and GS105 had different deletions relative to GS101 and GS104, respectively,					

and both were consistently a few days earlier flowering than their near-isogenic counterparts with *Ppd-A1b* {10612}.

Ppd-B1.

<i>Ppd-B1a</i> {0063}.			[<i>Ppd2</i> {1566}]. 2BS {1566,1268,1269}.						
	i:	H(C) = Haruhikari*5	5 / Fukuwasekomugi	{1061	l }. H(D) = Haruhikari				
		5*/ Fukuwasekomug	gi <i>Ppd-D1a</i> {10611}.						
	s:	Cappelle-Desprez*/CS 2B{0058}.							
	v:	CS{1268}; Spica{55	57}; Timstein{1269}	•					
v2: Sharbati Sonora <i>Ppd-A1a</i> {887}. Fukuwasekomugi <i>Ppd-D1a</i> {10									
	c:	Varieties with the pl	notoperiod insensitiv	e allele	have more than one				
		Ppd-B1 copy per chr	comosome 2B: two co	opies ir	Récital, three copies in				
Sonora 64, Timstein and C591, and 4 copies in Chinese Spring									
		{10881}.							

Ppd-B1b	<i>Ppd-B1b</i> [{10611}],{10881}.							
v:	Cappelle-Desprez {10881}; Cheyenne {10881}; Norstar {10881};							
	Renan {10881}; Paragon {10881}; Beaver {10881}.							
v	2 : Haruhikari <i>Ppd-D1b</i> [{10611}].							
c	Varieties with the photoperiod sensitive allele have a single <i>Ppd-B1</i>							
	copy per chromosome 2B {10881}.							

63. Response to Salinity

63.3. Sodium exclusion

Add after Nax1 and Nax2:

QTL for Na⁺ exclusion and seedling biomass under salt stress were detected in the cross Berkut/Krichauff on chromosomes 2A (*Nax1* region) and 6A (*cfd080-barc171-6A*) {10917).

65. Response to Vernalization

Vrn-A1.

Vrn-A1. **ma:** *Xgwm271-5A* – 6.5 cM – *Vrn-A1* – *Xbarc232-5A* {10880}.

Insert heading: <u>Dominant spring habit alleles at the *Vrn-A1* locus</u> As currently listed based on the 2010 Supplement and earlier lists:

Recessive winter habit alleles at the Vrn-A1 locus

	vrn-A	41.	С	Copy nu	umber v	mber variation for <i>vrn-A1</i> was detected in IL369 (2 copies)					
{10202}, I						, Malacca (2 copies) and Hereward (3 copies). Higher copy					
			n	umber	was as	sociated with later flowering or with increasing					
			re	equiren	nent fo	r vernalization (i.e. longer exposure to cold is needed to					
			a	chieve	full ve	rnalization) {10881}.					
	vrn-A	A1a			vrn-A.	<i>la</i> {10198}. v: Claire {10880}; Triple Dirk C					
	[{10]	198}].			{10880}.					
		v2:	_	Chine	se Spri	ng Vrn-D1a {10880}.					
		c:		GenB	ank AY	Y616455 {10198}.					
	vrn-A	A1b	{10	881}.	v:	IL369 {10202}; Malacca {10881}.					
					c:	GenBank JF965396 {10881}.					
Th	is alle	le ha	s tw	o copi	es of th	ne gene, possibly arranged in tandem although the physical					
stru	ucture	is ur	nkno	own. B	oth cop	pies are distinguished from Chinese Spring vrn-Ala by a					
SN	P in e	xon ′	7 (T	in Ma	lacca,	C in Chinese Spring). One copy also has a SNP in exon 4					
(T	in Ma	lacca	a, C	in Chi	nese Sj	pring). Sequenced cDNAs from Malacca show that both					
cop	pies ar	e exp	pres	sed {1	0881}.						
	vrn-A	A1c	{108	881}.	v:	Hereward {10881}.					
					c:	GenBank JF965397 {10881}.					
Ac	compa	risor	n of	Claire	(vrn-A	<i>la</i>), Malacca { <i>vrn-A1b</i> } and Hereward (<i>vrn-A1c</i> }					
ind	licated	that	inc	reasing	g gene	copy number is associated with lateness {10881}.					
Τw	o win	ter a	llele	es were	identi	fied based on an SNP in exon 4 {10656}:					
	<i>vrn-A1v</i> {10916}. v: Don Ernesto INTA {10916}; Jagger {10916}; Norin 61										
	{10916}; Opal {10916}.										
	vrn-A	$AIw{$	109	916}.	v:	Bezostaya {10916}; Bavicora M 92 {10916}; Kavkaz					
						{10916}; Gennson 81 {10916}; Seri M 82 {10916};					
						Wichita {10916}.					
Vr	n-B1.		ma	a:	Tsn1 -	$-14.8 \text{ cM} - Vrn - B1 - 0.7 \text{ cM} - Xwmc75 - 5B \{10880\}$					

Vrn-B1.		ma:	Tsn	l - 14.	$8 \text{ cM} - Vrn - B1 - 0.7 \text{ cM} - Xwmc75 - 5B \{10880\}.$	
Vrn-B1c {10880)}. tv:		<i>T. turgidum</i> ssp. <i>carthlicum</i> PI 94749 {10880}.		
			c:	Ge	nBank JN817430, contains a 5,463 retrotransposon	

	insertion in the 5' UTR region {10880}.
--	---

Proteins

80. Proteins

80.2. Enzymes 80.2.33. Phytoene synthase

Psy-A1.									
Psy-A1t {10920}	}.	v:	WAWHT2074 {10920}.						
	ma	:	<i>Xgwm344-7A</i> – 3.9 cM – <i>Psy-A1t</i> – 9.9 cM – <i>Xcfa2257a-7A</i>						
			{10920}.						
	c:		HM006895 {10920}.						
Associated with a higher flour b* value.									

80.2.38. Flavone 3-hydroxylase (EC 1.14.11.9)

F3h-A1 {10	0823}.	2AL {10823}.		v:	CS {10823}.				
]	ma:	<i>Xgwm1067-2A</i> – 2.1	cM –	F3h-A1 -	- 11.4 cM – <i>Xgwm1070-2A</i> {10823}.				
F3h-B1 {10	0823}.	2BL {10823}.		v:	CS {10823}.				
1	ma:	F3H-B1/Xgwm1067	-2B – 1	1.4 cM –	- Xgwm1070-2B {10823}.				
F3h-D1 {1	0823}.	2DL {10823}.		v:	CS {10823}.				
1	ma:	<i>Xgwm</i> 877-2 <i>D</i> – 1.8	cM - F	F3h-d1/Xg	gwm1264-2D – 22.7 cM – Xgwm301-2D				
		{10823}.							
F3h-B2 {10	0823}.	2AL {10823}.	v:	CS {108	323}.				
1	ma:	<i>Xgwm1070-2B</i> – 30.	1 cM -	- F3h-B2	{10823}. Located in the terminal region				
	near Xgwm1027-2B {10823}.								

80.2.39. Zeta-carotene desaturase

Zds-A	1 {109	05}.	2A {10)905}.	tv:	Langde	on {10905}
				· · · · ·			· · · · · ·
Zds-B	1 {109	05.	2B {10905}.		tv:	Langde	on {10905}.
Zds-D	1 {109	06}.	2DL {	10906}.	v:	CS {10906}.	
	Zds-1	D1a {10	906}.	TaZDS-D	<i>la</i> 109	06}.	
	v:	CA963	32 {1090	06}. Many	Chines	e wheat	and 80 CIMMYT lines {10906}.
Zds-D1b {10906}. TaZDS-D				TaZDS-D	<i>1b</i> {10	906}.	
v: Ning 99415-8 {10906}				8 {10906]	; Zher	ngzhou 🤅	9023 {10906}; Zhongyou 9507 {10906};
Zhoumai 13 {10906}.							

Cv. Zhongyou 9507 has lower yellow flour pigment content, preferred for Chinese steamed bread and dry Chinese noodles. A QTL in the *Zds-D1a* region explained 18.4% of the variation in yellow pigment content in Zhongyou 9507 / CA 9632 {10906}.

80.2.40. Carotenoid beta-hydroxylase (non-heme di-iron type)

HYD are non-heme di-iron b-hydroxilases that act primarily on b-carotene

<i>Hyd-A1</i> {10913}.	2AL {10913}.	tv:	Kronos {10913}.
		v:	UC1041 {10913}.
<i>Hyd-B1</i> {10913}.	2BL {10913}.	tv:	Kronos {10913}.
		v:	UC1041 {10913}.
<i>Hyd-D1</i> {10913}.	2DL {10913}.	tv:	Kronos {10913}.
		v:	UC1041 {10913}.
<i>Hyd-A2</i> {10913}.	5AL {10913}.	tv:	Kronos {10913}.
		v:	UC1041 {10913}.
<i>Hyd-B2</i> {10913}.	4BL {10913}.	tv:	Kronos {10913}.
		v:	UC1041 {10913}.
<i>Hyd-D2</i> {10913}.	4DL {10913}.	tv:	Kronos {10913}.
		v:	UC1041 {10913}.

80.3. Endosperm storage proteins 80.3.1. Glutenins 80.3.1.3. Glu-3

Glu-A3.

Due to an error made in an earlier update, add:

<i>Glu-A3ax</i> [{10116}].	6.1 {10116}.	tv:	Buck Cristal {10116}.				
The designation of this protein (subunit 6.1) as an allele of <i>Glu-A3</i> was deduced from its							
electrophoretic mobility and awaits confirmation through mapping studies.							

Glu-B3.

Due to an error made in an earlier update, delete:

Glu-B3z	6.1 {10116}.	1	tv:	Buck Cristal {10116}.
[{10116}].				

80.3.3. Other endosperm storage proteins 80.5.8. Puroindolines and grain softness protein

After the second last paragraph of notes starting 'In *T. monococcum* the gene order......' Add a new paragraph: The soft kernel trait was transferred to durum {10899}.

$\mathbf{80.5.9}$ Endosperm-specific wheat basic region leucine zipper (bZIP) factor storage activator

Spa-	A1 (10908}.	1AL {	10909}.	v:		Recital {10909}.
Spa-	B1 {10908}.	1BL {10909}.			v: Recital {10908}.	
		ma:	Glu-B1 -	- 1.3 cl	M –	Spa-B1 {10909}.
	Spa-B1a {1090	08}.	v: Ch	inese S	Sprir	g {10909}; Recital {10908}; Australian

				geno	genotypes listed in {10908}.		
	<i>Spa-B1b</i> {10908}.			Renan {10909}; Australian genotypes listed in {10908}.			
Spa-	D1 {10908}.	1DL {	10909) }.	v:	Recital {10909}.	

After testing an earlier hypothesis that SPA genes affected wheat quality, analyses conducted by both $\{10908\}$ and $\{10909\}$ obtained no evidence supporting a significant effect and attributed any variation to the closely linked *Glu-B1* locus.

Pathogenic Disease/Pest Reaction

81. Reaction to Barley Yellow Dwarf Virus

Bdv3. Add note:

Further translocations lines with Bdv3 are described in {10882}.

82. Reaction to Bipolaris sorokiniana

Sb1 {	<i>Sb1</i> {10855}.		Partial resistance.	7DS {10855,10856}.			
	i:	HUW234Ltn+ {10855}.					
	v:	Saar {10	856}; Lines with Lr34/Yr18/Pm38/Sr57 - see Reaction to Puccinia				
		triticina,	Reaction to Puccinia striiformis, Reaction to Blumeria graminis,				
		Reaction	to Puccinia graminis, Leaf tip necrosis.				
	ma:	Pleiotrop	bic or closely linked with Lr34/Yr18/Pm38/Sr57 located between				
		Xgwm12	220-7DS and Xswm10-7DS (1.0 cM interval) {10856}; see also				
		Reaction	to Puccinia triticina, Reaction to Puccinia striiformis, Reaction to				
		Puccinia graminis and Reaction to Blumeria graminis.					
	c:	Putative	ABC transporter {1086	52}.			

83. Reaction to Blumeria graminis DC.

83.1. Designated genes for resistance

Pm3	•		
	Pm3a.	v:	Madrid {10843}; Merker {10843}; Robigus {10843}; Tabasco
			{10843}.
	Pm3b.	v:	Enorm {10843}.
	Pm3d.	v:	Vergas {10843}.
	Pm3e.	v2:	Cortez $Pm5$ allele {10843}.
		m a:	$Pm3e - 7.1 \text{ cM} - Xwmc818 \cdot 1A \{10843\}.$
	Pm3f.	v:	Viza {10843}.
	Pm3f.	v:	Viza {10843}.

<i>Pm21</i> .	bin:	6VS 0.45-0.58 {10859}.
	~	

		ma:	na: Potentially useful markers are provided in {10918}.					
		ly the serine/threonine kinase gene Stpk-V {10859}.						
<i>Pm31</i> .		This	gene designati	tion {0301} is not valid; subsequent studies {10918}				
		show	ed the gene wa	was <i>Pm21</i> .				
Pm46 {	[10847	'}.	Partial resista	ance. 4DL {10847,10678}.				
			bin	n: Distal to break point 0.56 FL {10678}.				
	i:	RL6	077 = Thatcher	er*6 / PI 250413 {10847,10678}.				
	ma:	Pleio	tropic or close	ely linked with Lr67/Yr46/Sr55 and associated with				
		Xgwi	n165-4D and X	Xgwm192-4DL {10847,10678}.				
<i>Pm47</i> {10912}. Recessive.		Recessive.	<i>PmHYLZ</i> {10912}. 7BS {10912}.					
	bin:		-1 c-0.27. v :	Hongyanglazi {10912}.				
	ma: Xgpw2097-7B – 0.9			$0.9 \text{ cM} - Pm47 - 3.6 \text{ cM} - Xgwm46-7B \{10912\}.$				

83.2. Suppressors of *Pm*

SuPm8.Add comment following the present entry:Pm8 was suppressed when locus Pm3 is transcribed (including Chinese Spring andThatcher which have no currently detectable Pm3 resistance alleles) {10828}.

83.3. Temporarily designated genes for resistance to *Blumeria graminis*

D _m C16 (10	10021		7 4 1	(1000	()	him	7 1 16 0 86 0 00
T mG10 {10	1000}.		/AL	{10000)}.	DIII;	/AL10 0.80-0.90.
			tv:	T. dic	occoides	G18-1	6 {10886}.
	ma:	Xgwr	m1061	/Xgwm	344-7A -	- 1.2 cN	M – PmG16/wPt-1424/wPt6019 –
		2.4 c	M - w	Pt-049	4/wPt92.	l7/Xwn	1c809-7A {10886}.
PmHNK54	{10897	}.	2A	L {108	97}.	bin:	2AL1 C-0.85.
	v:	Zheng 9	9754 {	10897}	•		
	ma:	Xgwm3	72-2A	-5 cM	-PmH	VK54 –	6.0 cM – <i>Xgwm312-2A</i> {10897}.
Ml3D32 {1	0892}.	51	BL {10)892}.	bin:	5BL ().59-0.76.
	tv: 2	T. dicoc	coides	s I222 {	10892}.	v:	3D232 {10892}.
	ma:	Xwmc	415-51	8 – 1.3	cM - Ml	3D232	- 3.3 cM - <i>CJ832481</i> {10892}.
		Co-seg	gregati	on with	n 8 EST 1	markers	s including an NBS-LRR
	analogue {10892}.						
MlAB10 {1	0873}.	2B1	L {108	373}.	bin:	2BL6	0.89-1.00.
	v: NC97BGTAB10 PI 604036 {10873}.						3}.
	tv:	T. dice	occoid	es PI 4'	71746 {1	0873}.	
	ma: $Xwmc445-2B - 7 \text{ cM} - MlAB10 \{10873\}.$						

New: Reaction to Cephalosporium gramineum

Disease: Cephalosporium stripe

QTL:

Coda (more resistant) / Brundage (less resistant): RIL population: 7 QTLs identified based on whiteheads; three from Coda – QCs.orp-2D.1 (nearest marker C, $R^2 = 0.11$),

QCs.orp-2B (nearest marker *Xwmc453-2B*, $R^2 = 0.08$), and *QCs.orp-5B* (nearest marker *Xgwm639-5A*, $R^2 = 0.12$) and four from Brundage (*QCs.orp-2D.2* (nearest marker *Xbarc206-2D*, $R^2 = 0.04$), *QCs.orp-48* (nearest marker *wpt-3908*, $R^2 = 0.05$), *QCs.orp-5A.1* (nearest marker *wpt-3563*, $R^2 = 0.08$), *QCs.orp-5A.2* (nearest marker *B1*, $R^2 = 0.05$) {10836}.

87. Reaction to *Fusarium* spp.

87.1. Disease: Fusarium head scab, scab

Fhb4	-}. <i>Qf</i>	<i>Qfhi.nau-4B</i> {102			4BL {10282,10883	1}.			
	bin:	4BL5-0.86	-1.00.	i:	Mianya	2419 / Wangshibai			
			{10885}.						
	v2:	Wangshuibai <i>Fhb5</i> {10884}.							
	ma:	Located in	Located in a 1.7 cM segment flanked by <i>Xhbg226-4B</i> and						
		Xgwm149/.	Xgwm149/Xmag4580-4B {10883}.						
Altho	Although plants with <i>Fhb4</i> were taller than the recurrent parent, the height difference was								
not as	sociate	d with the R	<i>ht-B1</i> l	ocus {1	0885}.				
Fhb5	{10896	b. Qf	hi.nau-	5A {10	282}.	5AS {10896}.			
	bin:	C-5AS3 0.	75. i:	Mi	Mianyang 99-323 and PH691 backcross derivatives				
		selected for <i>Qfhi.nau-5A</i> {10896}.							
	v2:	Wangshuibai <i>Fhb4</i> {10896}.							
	ma:	Mapped to a 0.3 cM interval between <i>Xbarc117/Xbarc358/</i>							
		gwm293/X	gwm30	4-5A ai	nd Xgwm	415-5A {10896}.			

Ernie (I) / MO 94-317 (S): RIL population: 3 QTLs on chromosomes 3BSc, 4BL and 5AS accounted for 31 and 42% of the total phenotypic variances for DON and Fusarium damaged kernels (FDK), respectively. A minor QTL ($R^2 = 0.04$) for FDK was on chromosome 2B {10831}.

Add at end of this section:

Six of 9 NIL pairs made by MAS for *Xgwm0181-3B* earlier located near a FCR QTL on 3BL

Grandin (S) / PI 277012 (I): DH population: Two QTLs, *Qfhb.rwg-5A.1* on 5AS ($\mathbb{R}^2 = 0.06-0.2$) and *Qfhb.rwg-5A.2* on 5AL ($\mathbb{R}^2 = 0.12 - 0.2$) conferred type I and II resistance and reduced DON content {0147}. The new QTL on 5AL was closely but not completely linked with gene *q* which is present in PI 277012 {10860}.

Nanda 2419 / Wangshuibai: Above <u>Type IV resistance</u> add: Backcross-derived NILs with *Qfh.nau-2B*, *Qfhs.nau-3B*, *Qfhi.nau-4B* (syn. *Fhb4*), and *Qfhi.nau-5A* were developed with Mianyang 99-323 as the recurrent parent {10884}.

Wheaton (I) / Haiyanzhong: RIL population: Four QTLs, *Qfhb.uhgl-7D* [syn. *Qhb.hyz-7D*], nearest marker *Xwmc121-7D*, $R^2 = 0.16 - 0.2$), *Qfhb.uhgl-6B.1* [*Qhb.hyz-6B.1*], $R^2 = 0.4$), *Qfhb.uhgl.6B.2* [*Qhb.hyz-6B.2*], $R^2 = 0.07$), *QFhb.uhgl-5A* [*Qhb.hyz-5A*], $R^2 = 0.04 - 0.07$) were from Haiyanzhong, and *QFhb.uhgl-1A* [*QFhb.ughl-1A*], $R^2 = 0.05$) was from Wheaton {10837}.

To the paragraph beginning: In a reciprocal backccross of Chris........ {10398}' add: Further study of the 3A, 6A and 4D reciprocal substitution lines indicated that chromosome 3A of Frontana had the largest effect on incidence, severity, spread and kernel damage, 4D less so and 6A possibly not at all (10900}.

87.2. Disease: Crown rot caused by *Fusarium pseudograminearum*, *F. culmorum* and other *Fusarium* species

2-49 / W21MMT70: DH lines: Three QTLs for seedling resistance, viz. QCr.usq-1D.1, and a weaker QTL on chromosome 7A from 2-49 and QCr.usq-3B.1 (R² = 0.41) from W22MMT70 {10883}.

Following the entry Lang (S) / CSCR6 add: Six of 9 NIL pairs made by MAS for *Xgwm01081-3B* earlier located near the 3BL QTL {10703} in CSCR6 showed significant differences (P<0.01) in crown rot response {10891}.

Sunco / 2-49: DH population: Three QTLs for seedling resistance, viz. QCr.usq.1D.1 and QCr.usq.4B.1 (R² = 0.19) from 2-49 and QCr.usq.2B.11 from Sunco {10883}.

90. Reaction to Mayetiola destructor (Say) (Phytophaga destructor) (Say)

<i>H26</i> .	bin:	3DL3-0.81-1.00.						
	Add n	Add note:						
H26 is very	H26 is very close to H32 {10846}.							
<i>H32</i> .	bin:	3DL3-0.81-1.00.						
	ma: $Xrwgs10-3D - 0.5 \text{ cM} - H32/Xrwgs11-3D - 0.5 \text{ cM} - Xrwgs12-3D$							
	{10846}.							
	Add note:							
<i>H32</i> is very close to <i>H26</i> {10846}.								

Add to temporary symbols:

<i>HNC09MDD14</i> [<i>Hf-NC09MDD14</i> {10844}]. 6DS {10843}.								
	v:	VC09MDD14 PI 656395{10843}.						
	dv:	Ae. tauschii TA2492 and/or TA2377 {10843}.						
	ma: $Xgdm36-6D - 1.5$ cM $- HNC09MDD14/Xcfd123-6D$ {10843}.							
		HNC09MDD12 could be allelic to, but is different from, H13 {10843}.						

91. Reaction to *Meloidogyne* spp.

92. Reaction to Mycosphaerella graminicola (Fuckel) Schroeter

<i>Stb9</i> {10027	Culture	IPO890)11.	2BL {100	27}.		
	v: Courtot {1			Tonic {10	027}.		
	ma:	Xfbb226-	$6-2B - 3 \text{ cM} - Stb9 - 9 \text{ cM} - XksuF1b-2B \{10027\}$				2B {10027}.
<i>Stb16</i> [{1087	Seedling	Seedling and adult plant resistance. <i>Stb16q</i> {10879}.				{10879}.	
	3DL {1	0879}.	v2:	Synthetic	: W-7976 S	tb17 {108	879}.
	ma:	Associated	l with X	[gwm494-3	3D and map	oped as a	QTL, $R^2 = 0.4 -$
		0.7 in seed	lling tes	ts and 0.2	8 – 0.31 in 1	mature pl	ants {10879}.

<i>Stb17</i> {10879}.			Adult plant resistance. 5AL {10879}.							
		v2:	Sy	Synthetic W-7976 <i>Stb16</i> {10879}.						
ma: Associated with <i>Xhbg247-5A</i> and					A and mapped as a QTL, $R^2 = 0.12 -$					
			0.3	2 {1087	79}.					
<i>Stb18</i> {10827}.			Confers resistance to IPO0323, IPO98022, IPO98046 {10827}.							
	6DS {10827}. v			v2:	Balance <i>Stb6 Stb11</i> {10827}.					
ma:			Mapped as a QTL located in a 8.8 cM region spanned by							
			<i>Xgpw3087-6D</i> and <i>Xgpw5176-6D</i> {10827}.							

QTL: Add at end of section:

Apache / Balance: Analyses with a panel of *M. graminicola* cultures identified QTLs on chromosomes 1BS (Apache, considered to be *Stb11*), 3AS (Balance, considered to be *Stb6*), 6DS (Balance, named as *Stb18*), 7DS (Apache, considered to be *Stb4*) and 7DL (Apache) {10827}.

Florett / Biscay (S): RIL population: two QTL for APR located on chromosomes 3B and 6D {10901}.

Tuareg / Biscay (S): RIL population: two QTL for APR were located on chromosomes 4B and 6B {10901}.

93. Reaction to *Phaeosphaeria nodorum* (E. Muller) Hedjaroude (anamorph: *Stagonospora nodorum* (Berk.) Castellani & E.G. Germano). 93.1. Genes for resistance

QTL

Salamouni / Katepwa: RIL population: Two QTL, *QSnb.fcu-1A* (*Snn4*) ($R^2 = 0.24$) and *QSnb.fcu-7A* ($R^2 = 0.16$) were associated with SNB response to isolate Sn99CH 1A7a {10867}.

93.2. Sensitivity to SNB toxin

Snn4.	Add:	v: Salamouni {10867}.
Snn4.	Add:	v: Katepwa {10867}.

95. Reaction to Puccinia graminis Pers.

Sr6.	ma:	Add: <i>Xgwm102-2</i> D – 0.9 cM – <i>Xgpw94049-2D</i> – 5.6 cM – <i>Sr6</i> – 1.5 cM						
		– Xwmc453/Xcfd43-2D {10870}.						
Sr21.	dv:	After the Einkorn entry insert: Dv92 Sr35; G2919 Sr35 {10876}.						
Sr22.	bin:	Add: 7AL-13 0.83-0.89 {10869}.						
	ma:	Add: Recombined lines with shortened introgressions from diploid						
		wheat are reported in {10869}; the shortest was U5616020-154.						
Sr24.	v:	Ernest {10845}; Keene {10845}.						
	ma:	<i>Xbarc71-3Ag</i> was considered a better marker for <i>Sr24</i> than STS						
		Sr24#12 {10845}.						
	1BL.	tr: Add: Millenium {10845}.						

Sr30.		ma:	$Xcfd12-5D - 9.0 \text{ cM} - Sr30 - 16.6 \text{ cM} - Xgwm292-5D \{10858\}.$					
		Add no	te:					
Accor	ding	to {108	58} Webster RL6201 carries a second gene <i>SrW</i> that confers resistance to					
the race Ug99 group.								
Sr31.		ma:	$Xscm09-1R_{208}$ {10845}.					
Sr35.		bin:	3AL8 0.85-1.00. i: Marquis*5/G2919 {10876}.					
		dv:	DV92 Sr21 {10876}; G2919 Sr21 {10876}.					
		ma:	Add: Mapped in diploid wheat within to a 2.2 – 3.1 cM region between <i>Xbf483299</i> and <i>XCJ656351</i> and corresponding to a 174 kb region in <i>Brachypodium</i> {10876}.					
Sr36.		ma:	Xgwm429-2B - 0.8 cM - Sr36/Xstm773-2/Xgwm319/Xwmc477-2B {10824}; $Xgwm319-2B - 0.9 \text{ cM} - Sr36/Xstm773-2/Xwmc477-2B$ {10824}; Of four markers $Xwmc477-2B$ was the best, but it is not a perfect marker {10845}.					
Sr39.			Add note:					
A Ti2	BL.21	BS-2SS	-2BS translocation (10872) separated from <i>Sr47</i> in DAS15 could contain					
Sr39 -	- see .	SrAEs7t	•					
		[
Sr40.		ma:	<i>Xwmc661-2B</i> – 6.4 cM – <i>Sr40</i> – 0.7 cM – <i>Xwmc344-2b</i> – 2.0 cM – <i>Xwmc477-2B</i> {10825}; <i>Xwmc661-2B</i> – 7.8 cM – <i>Sr40</i> – 2.5 cM – <i>Xwmc474-2B</i> – 1.0 cM – <i>Xwmc477-2B</i> {10825}.					
Sr47.			Add to chromosome location: ',2BS {10872}'.					
Add n	ote:		Further chromosome engineering on DAS15 showed that the alien segment carried two resistance genes. The gene on 2BL was considered to be $Sr47$ based on low infection type. The second gene located in 2BS produced a low infection type similar to $Sr39$ and was located in a similar position to that gene {10872}.					
		2B = 2	BL-2SL-2BL.2BS tv: RWG 35 {10872}; RWG 36 {10872}.					
		ma:	Located in the interval $Xgwm47-2B - Xgpw4165-2B$ {10872}.					
Sr48.		Update	e: v: To be provided. v2: Arina <i>Sr56</i> AUS 91457{10851}.					
Sr54	{1081	6}.	2DL {10816}. v2: Norin 40 <i>Sr42</i> {10816}.					
Sr55	{1084	7}.	Adult plant resistance, 4DL {10847,10678}					
bin: Distal to break point 0.56 FL {10678}.								
i: RL6077 = Thatcher*6 / PI 250413 {10847.10678}.								
ma: Pleiotropic or closely linked with $Lr67$ and $Yr46$ and associ								
$X_{gwm165-4D}$ and $X_{gwm192-4DL}$ {10847.10678}								
Sr56	{1085	1}	Adult plant resistance OSr Sun-5RI {10565}					
5RI (10565 10251) Addit plain resistance. $USI.SUR-SDL$ [1			(10851) bin: 5BL16					
	v:	AF533	(10851). v2: Arina Sr48 AUS 91457{0138}.					

ma:	<i>Xgwm118-5BL</i> – 13.6 cM – <i>wPt9116</i> – 5.4 cM – <i>Sr56</i> – 6.9 cM – <i>wPt0484</i>
	{10851}.

In the earlier QTL analysis of an Arina/Forno population *QSr.Sun-5BL* accounted for 12% of the PVE {10565}. In the present study of an Arina/Yitpi RIL population stem rust response segregated as a single gene. The response phenotype was 40-50 MS-S.

<i>Sr</i> 57 {10861}.		Adult plant resistance.	7DS {	10861}.				
	bin:	7DS4.						
	su:	Lalbahadur(Perula7D) GID 5348503 and GID 5348496 {10861,10862}						
	v: Chinese Spring {10861}; Wheats with <i>Pm38/Lr34/Yr18</i> , see Read							
		Blumeria granminis, React	tion to <i>l</i>	Puccinia striiformis, Reaction to				
		Puccinia triticina, Leaf tip	necros	is.				
ma: See Reaction to <i>Puccinia triticina</i> .								
	c:	Putative ABC transporter {10862}.						

Further evidence for the effects of this gene on stem rust response can be found in {299, 10565,10733,10863,10864,10865,10866}.

<i>SrAes7t</i> {10872}.		2BS = T2BL.2	BS-2SS	S-2SS-2BS {10872}.				
	v:	Line ()797 {10872}.	ma:	Sr39#50s	Sr39#50s {10741,10872}.		
SrAes7t n	nay be	identi	cal to Sr39 {108	372}.				
SrWeb {1	0858	}.	2BL {10858}.	v2:	Webster RL6201 Sr30 {10858}.			
	ma:	Xg	wm47-2B – 1.4 c	cM - Sr	<i>Web</i> – 12.5	cМ	-Xwmc332-2B {10858}.	
<i>Sr1RS</i> ^{Amigo} {10845}. 1AS (T1AL.1RS) {389,1624}.								
v2: Amigo Sr24 {1464,10845}. ma: Xscm09-1R ₂₂₄ {10845}.								
This alien segment also carries $Pm17$ – see $Pm17$.								

QTL:

RL6071 / RL6058 (R): RIL population: RL6058, a Tc backcross line with Lr34/Sr57 is more resistant than Tc. Enhancement of resistance in both Kenya and North America was attributed to a QTL in the region wPt5044 - Xgwm-2B in chromosome 2BL {10902}.

96. Reaction to *Puccinia striiformis* Westend. 96.1. Designated genes for resistance to stripe rust

Yr5.	ma:	<i>Xwmc175-2B</i> – 1.1 cM – <i>YrSTS-7/8</i> – 0.3 cM – <i>Yr5</i> – 0.4 cM – <i>Xbarc349-2B</i> {10826}.					
Yr15.	ma:	<i>Xwmc128/Xgwm273/Xgwm582-1B</i> – 0.4 cM –					
		Yr15/Xwgp34/Xgwm413/Xbarc8 {10826}.					
Yr18.	c:	Putative ABC transporter {10862}.					
<i>Yr46</i> .	Yr46. Add note:						
Pleiotrop	hic or c	closely linked with Sr55 and Lr67.					
Yr46. Pleiotrop	Yr46.Add note:Pleiotrophic or closely linked with Sr55 and Lr67.						

Yr47.

Update the existing entry to the following:

<i>Yr47</i> {10679}.	5BS	{10679}.	bin:	5BS5-0.71- 0.81.		
	v:	AUS28183 =	= V336 {	10679}; AUS28187 {10679}.		
	ma:	Xgwm234-5B - 10.9 cM - Lr52 - 4.1 cM - Yr47 - 9.6 cM -				
		Xcfb309-5B	{10679}	; $Xgwm234-5B - 10.2 \text{ cM} - Lr52 - 3.3 \text{ cM} -$		
		Yr47 - 8.2 c	M - X c f b	<i>b309-5B</i> {10679}.		
TT 1 /						

Update:

<i>Yr48</i> {10705}.		Adult plant resistance.		Syn. Qyr.ucw-5AL {	5AL {10705}.				
bin:			bin:	5AL23 0.87-1.00.					
	v :	U	UC1110 (S) / PI 610750 RIL 4 = GSTR 13504 & RIL 167 = GSTR 136						
		{1	{10705}.						
	ma	a: Xv	<i>Xwmc727-5AL</i> – 3.7 cM – <i>Vrn-A2</i> – 0.1 cM – <i>Yr48/BE444566</i> -						
	5AL/Xcfa2149-5AL/Xgpw2181a-5AL/Xwmc74-5AL/Xwmc410-5AL {10705						<i>410-5AL</i> {10705}.		

PI 610750 = Synthetic 205 (Croc 1 / Ae. tauschii) / Kauz) {10705}.

<i>Yr50</i> {10849}.			Derived fr	Derived from <i>Th</i> .			4BL {10	849}.		
		v:		CH233	{10849}.	ma:	cent.	Xbar	c1096-4B	-6.9 cM - Yr50 - 7.2
					()		cM –	Xbarc-	-4B {1084	9}.
										,
Yr51	{1()850)}.		4AL {108	50}.			bin:	4AL4-0.80-100.
	v:		Lin	e 5515 A	AUS 91456 {	10850	}. v2:	AUS	27858 Ge	ene 2 {10850}.
	ma	:	wPi	t4487 – 9	9.8 cM – Yr5	51 – 4.4	cM - w	Pt076.	3 – 7.9 cM	I – Xgwm160-4B
			{10	850}.						
Yr52	{1()852	2}.		Adult plan	Adult plant resistance. 7BL {10852}.				
		bir	1:	7BL-3	3 0.86-1.00.	v :	PI 183527 {10852}; PI 660057 = Avocet S / P			660057 = Avocet S / PI
							183527	' F4-41	{10853}.	
		ma	1:	Xbard	c182-7B-1.	2 cM –	Yr52 - 2	1.1 cM	-Xwgp52	258 – 5.7 сМ –
				Xcfa2	040-7B {108	852}.				
Yr53 {10854}. 2BL {10			0854}.	tv:]	PI 48014	48 {10	854}.			
v:			Avocet S / P	PI 48014	48 F5-12	28{108	54}.			
	m	a:	Xv	vmc441-	-2B - 5.6 cM	I - Yr53	8 - 2.7 c	M - XI	LRRrev/NI	<i>LRRrev</i> ₃₅₀ – 6.5 cM –
	Xwmc149-2				-2B {10853}	<i>B</i> {10853}. <i>Yr53</i> was estimated to be 35 cM distal to <i>Yr5</i> based				
	on an F2 allelism test, but on an integrated map this distance w								stance was about 20 cM.	

96.2. Temporarily designated genes for resistance to stripe rust

<i>YrAS2388</i> {10822}.			dv:	Ae. to	Ae. tauschii AS2388 {10822}.		
	ma:	Xwmc617-41	DS-3	34.6 cM – Y	rAS2388 -	- 1.7 cM - Xwmc285-4DS {10822}.	
YrR	YrR61 {10914}. QYr.ug			uga-2AS 1	0914}.	2AS {10914}.	
			v	Pionee	Pioneer 26R61 = PI 612056 {10914}.		
Yrx	y1 {108	29}.		High temp	erature res	istance.	
	v:	Mingxian 169) / Xia	oyan 54 F ₃	-4-14 {108	329}.	
	v2: Xiaoyan 54 <i>Yrxy2</i> {10829}.						
n	ma: <i>Xbarc49-7AS</i> – 15.8 cM – <i>Yrxy1</i> with closer flanking RGA markers {10829}.						

<i>Yrxy2</i> {10829}.		29}.	High temperature				
			resistance.				
	v:	Mingxian 169 / Xiaoyan 54 F ₃ -4-30 {10829}.					
	v2:	Xiaoyan 54 Yrxy1 {10829}.					
ma: $Xwmc794-2AS - 4.0 \text{ cM} - Yrxy2 - 6.4 \text{ cM} - Xbarc5-2AL \{10829\}.$							

96.3. Stripe rust QTLs

Pioneer 26R61 (R) / AGS2000 (S): RIL populations: Two QTLs, QYr.uga-2AS (R² = 0.56) flanked by *Xbarc124-2A* and *Xgwm359-2A* (also named *YrR61*) and *QYr.uga-6AS* (R² = 0.06) {10914}. Minor QTLs were also on other chromosomes.

UC1110 (MR) / PI 610750 (MR): RIL population: Qyr.ucw-3BS ex UC1110, R² = 0.22, associated with Xgwm522-3B.1. This marker differs from Xgwm533-3B.2 that is associated with Yr30 {10705}; Qyr.ucw-5AL, R² = 0.1, ex PI 61075 – syn. Yr48 {10705}; Qyr.ucw-2BS, R² = 0.045, ex UC1110, located in the centromeric region near Xwmc474-2BS {10705}, Qyr.ucw-2AS, R² = 0.023, ex PI 61725, near wPt-5839 (10705}.

Stephens I / Platte (S): RIL population; 13 QTL were identified across several environments; significant QTL x environment interactions suggested that plant stage specificity, pathogen genotype and temperature as well as host genotype were important in determining rust response {10890}.

92.Reaction to *Puccinia triticina*

<i>92</i> .1. 0	Jenes Ior	resis	tance						
Lr11.		v:	Panola {10830}.	v2:	Jamestown Lr18 {10830}.				
Lr17.									
	Lr17a.	v:	Santa Fe {10830}.						
Lr18.	v2:	Jan	nestown Lr11 {10830}.						
Lr19.	v:	Dob	rynya {10821}; Ekada 6	{10821}; L	505 {10821}; Samsar {0108};				
		Volg	ouralskaya {10821}.						
	v2:	Kine	lskaya Niva Lr23 {10821	}.					
<i>Lr32</i> .	i:	RL	6086 = Tc*7//R15713/N	Aarquis K	{10874}; BW196 =				
		Ka	tepwa*6//RL5713/2*M	arquis K {	10874}.				
	ma:	Xba	arc128-3D – 9.1 cM – I	Lr32 – Xwr	nc43/Xbarc235-3D {10874}.				
<i>Lr34</i> .	v:	217	74 {10888}. List of U.S	. hard whe	ats in {10888}. Pedigree charts				
		sho	showing the presence of Lr34 in various Canadian wheat classes are						
		giv	en in {10889}.						
	ma:	Fu	ther markers for Lr34 a	nd various	marker-positive haplotypes that				
		lac	k leaf rust resistance are	e described	in {10887,10888}.				
c: Putative ABC transporter, GenBank FJ436983, in CS {10862}. F									
		cor	firmation of the ABC t	ransporter	is provided in {10887}.				
<i>Lr39</i> .	v:	Pos	strack {10830}.						

Lr42.	Change the current listing to the following:						
	1D {2	218}. v: AR93005	5 {1084	0}; Fannin {10595}, but not confirmed with			
		markers	{10840	}.			
	v2:	KS91WGRC11 Lr24	{218,1	0840}. dv: TA2450 {218}.			
1	ma:	Lr42 - 0.8 cM - Xwn	nc432-1	$1D - 1.6 \text{ cM} - Xcfd - D1 \{10840\}.$			
T 40	A 11	ADG (10042)					
Lr48.	Add:	2, 2BS {10842}.					
	ma:	$\frac{XWMC1/3-2B-10.3}{Contromoro} = 27.5 \text{ eV}$	CIVI - L	$r_{40} - 2.5 \text{ cm} - Awmc552-2B \{10842\}.$			
		Centromere - 27.5 Cr	VI – LI4	6 (est.) {10642}.			
Lr52.	v:	Add: AUS28183 = V	336 {1	0679}: AUS18187 {10679}			
	ma:	Add: Xgwm234-5B –	10.9 cl	M - Lr52 - 4.1 cM - Yr47 - 9.6 cM -			
		<i>Xcfb309-5B</i> {10679}	; Xgwn	<i>1234-5B</i> – 10.2 сМ – <i>Lr52</i> – 3.3 сМ – <i>Yr47</i> –			
		8.2 cM – <i>Xcfb309-5B</i>	8 {1067	9}.			
	T						
Lr58.	ma:	Add: A codominat	nt STS	marker <i>Xncw-Lr58-1</i> was based on the			
		sequence of <i>Xksul</i>	H16 {1()819}.			
I()	TT. J.		1055	(0.4. 100 75			
Lr03.	Unde ma:	Peoplace existing to	$\frac{1055}{2}$	2010 108/3. 27 Vhare 321/Yhare 57 34 2.9 cM 1 r63			
	ma.	{10875} '	ext Uy	Abur(521/Abur(5)) - 5A = 2.9 cm = L/05			
		[10075].					
<i>Lr65</i> {108	348}.	LrAlt {10739	}.	2AS {10739,10848}.			
	v:	Selection ARK 0; {1	0848};	<i>T. spelta</i> Altgold Rotkorn {10739,10848}.			
	ma:	Lr65 - 1.8 cM - X	lbarc21	2-2A/Xwmc382-2A – 2 cM – Xgwm636			
		{10739}; XE41MS	57-165	-3 cM - Lr65 - 2 cM -			
	<i>Xbarc124/Xbarc222/Xgwm614-2A</i> {10848}. <i>Lr63</i> was estimated to be						
Como alor	ta of A	about 10 cM from	$LrI/{$	10848}.			
Some plan	Its of A	ingola Rotkorn possess	s a seco	and gene conterning 11 12C {10848}.			
Lr67.	Corre	ect chromosome location	on to 41	DL {10675}			
21071	bin	C-0.53 {10675}: Dis	tal to 0.	.56 {10678}.			
	ma:	Replace first sentence	e with:	<i>Xcfd71-4D</i> – 1.5 cM – <i>Lr67</i> {10675}.			
Lr67 is ple	eiotropi	ic or closely linked wit	h <i>Sr55</i>	and Yr46.			
				-			
<i>Lr68</i> {108	317}.	Adult plant resistance	е.	7BL {10817}.			
	v:	Arula 1 CIMMYT G	ID 184'	7450 {10817}; Arula 2 CIMMYT GID			
		<u>1847422 {10817}.</u>	16 (100	17)			
	v2:	Parula Lr3b Lr34 Lr4	46 { 108	$1/\}$.			
	ma:	Close linkage with set the Apay \times Arula por	everal n	harkers in chromosome arm /BL and Lr140 in			
		$X_{owm} 146-7RL$ at 0.4	and 0	6 cM Gamma-irradiation induced deletion			
		stocks of Arula 1 that lack LrP but have $Lr14b$ were identified showing					
		that the two genes are located at different closely linked loci {10817}.					
				· · · · ·			
Lr69 {109	03}.	3DL {10903}.	v:	Toropi-6.3 {10903}.			
		Ι					
<i>Lr70</i> {109	04}.	5DS {10904}.	v:	Yet to be named selection of cross or backcross to Tc {10904}.			

					•	
	v2 :	KU3198 LrXX {10822	1}.	ma:	<i>Lr70 – Xgwm190-5D</i> {10904}.	
<i>LrXX</i> is believed to be a known gene for resistance.						
<i>Lr71</i> {109	11}.	<i>LrARK12c</i> {10910}. 1B centromere region not resolved {10911}.				
	v:	LrARK12c = T. spelta	Altgo	old Rotkorr	n selection {10910}. Common	
		wheat reference line un	nder ir	ncrease {10	0911}.	
	ma:	Xgwm11-1B - 3.3 cM	-Xgw	m18-1B –	1.0 cM - Lr71 - 1.3 cM -	
	X barc 187 - 1B - 0.5 cM - X b		arc137-1B	{10911}.		

LrAlt. Delete this section.

98. Reaction to *Pyrenophora tritici-repentis* (anomorph: *Drechlera tritici-repentis*)

98.2. Insensitivity to tan spot toxin (chlorosis)

T 2		A 1 1 7	(10071)			AD G2 0.04 1.00
<i>Isc2</i> .	v:	Add: I	Katepwa $(108/1)$	•	bin	2BS3 0.84-1.00.
tsc2.	v:	Salam	ouni {10871}.	tv:	A	ltar 84 {10871}.
	ma:	Xmage	681-2B/XTC3398	13 -	- 2.7	cM – <i>Tsc/XBE444541</i> – 0.6 cM –
		X	BE517745 {1087	1}. 4	An X	XBE444541 EST-STS co-segregating
		marker for Tsc2 was developed and lines with tsc2 produced a 50				pped and lines with <i>tsc2</i> produced a 505
		bp fragment whereas those with Tsc2 produced a 340 bp band				with <i>Tsc2</i> produced a 340 bp band
		{]	10871}.			

QTL

Salamouni / Katepwa: RIL population: variation at the *Tsc2* locus explained 54% of the variation in response to race DW5 {10871}.

NEW SECTION XX Reaction to Sitobion avenae

English grain aphid.

<u> </u>					
<i>Sal</i> [{10877}].		<i>RA-1</i> {10877}.	6AL {10877}.	tv:	C273 {10877}.
	ma:	Xwmc179-6A – 3.	37 cM - Sal - 4.7	'3 cM	-Xwm580-6A {10877}.

99. Reaction to Sitodiplosis mosellana (Gehin)

Add:

QTL:

Reeder I / Conan: RIL population: *QSm.mst-1A*, flanked by *Xwmc59-1A* and *Xbarc1022-1A* was the most effective and constant QTL for reduced larval infection over two years ($R^2 = 0.17$ and 0.34) {10841}. RILs with this QTL in three genetic backgrounds had reduced infestations of 42% {10841}.

100. Reaction to Schizaphis graminum Rond. (Toxoptera graminum Rond.)

<i>Gb3</i> .	bin:	7DL3 0.82-1.00.	v:	TAM 112 {0194}.	
	tv:	<i>Ae. tauschii</i> PI 268210 {10907}.			
	ma:	At the end of the present entry add: $\dots -0.8 \text{ cM} - Xbarc76-7D$			Xbarc76-7D
		$\{10169\}$. $H1067J6-R - 0.7$ cM $- Gb3 - 0.4$ cM $- H1009B3-F$ $\{10907\}$			

107. Reaction to Wheat Streak Mosaic Virus

Wsm2 {10802,10898}.			v:	RonL {10898}.
	ma:	Xgwm389-3	BB -	$30.8 \text{ cm} - Wsm2 - 45.2 \text{ cM} - Xgwm566-3B \{10898\}.$

References

Updates	
10027.	Chatrain L, Sourdille P, Bernard M & Brown JKM 2009 Identification and
	location of <i>Stb9</i> , a gene for resistance to septoria tritici blotch in wheat cultivars
	Courtot and Tonic. Plant Pathology 58: 547-555.
10651.	Crop Science 49: 2058-2064.
10673.	Theoretical and Applied Genetics 121: 195-204.
10675.	Hiebert CW, Thomas JB, McCallum BD, Humphries DG, DePauw RM,
	Hayden MJ, Mago R, Schnippenkoetter W & Spielmeyer W 2010 An
	introgression on wheat chromosome 4DL in RL6077 (Thatcher*6/PI 250413)
	confers adult plant resistance to stripe rust and leaf rust. Theoretical and
	Applied Genetics 121: 1083-1091.
10679.	Bansal UK, Forrest KL, Hayden MJ, Miah H, Singh D & Bariana HS 2011
	Characterisation of a new stripe rust resistance gene <i>Yr47</i> and its genetic
	association with the leaf rust resistance gene <i>Lr52</i> . Theoretical and Applied
	Genetics 122: 1461-1466.
10705.	Lowe I, Jankuloski L, Chao SM, Chen XM, See D & Dubcovsky J 2011
	Mapping and validation of QTL which confer partial resistance to broadly
	virulent post-2000 North American races of stripe rust in hexaploid wheat.
	Theoretical and Applied Genetics 123: 143-157.
10741.	Theoretical and Applied Genetics 119: 1441-1450.
10803.	Theoretical and Applied Genetics 122: 1537-1545.

New	
10814.	Xi YJ, Ma XF, Zhong H, Liu SD, Wang ZL, Song YY & Zhao CH 2011
	Characterization of a male sterile mutant from progeny of a transgenic plant
	containing a leaf senescence-inhibition gene in wheat. Euphytica 177: 241-251.
10815.	Yoshiya K, Watanabe N & Kuboyama T 2011 Genetic mapping of the genes
	for non-glaucous phenotypes in tetraploid wheat. Euphytica 177: 293-297.
10816.	Hiebert C 2011 Personal communication.
10817.	Herrera-Foessel SA, Singh RP, Huerta-Espino J, Rosewarne GM, Calvo-Salazar
	V, Lan C & Lagudah ES 2011 Lr68: A new gene conferring slow rusting
	resistance to leaf rust in wheat (manuscript in preparation).
10818.	Haque MA, Martinek P, Watanabe N & Kuboyama T 2011 Genetic mapping
	of gibberellic acid-insensitive genes for semi-dwarfism in durum wheat. Cereal
	Research Communications 39: 171-178.
10819.	Kuraparthy V, Sood S, Brown-Guedira & Gill BS 2011 Development of a
	PCR assay and marker-assisted transfer of leaf rust resistance gene Lr58 into
	adapted winter wheats. Euphytica 180: 227-234.
10820.	Kosuge K, Watanabe N & Kuboyama T 2011 Comparative genetic mapping of
	homoeologous genes for the chlorina phenotype in the genus Triticum.
	Euphytica 179: 257-263.
10821.	Morgounov A, Ablova I, Babayants O, Babayants L, Bespalova L,

	Khudokormov ZL, Litvinenko N, Shamanin V & Syukov V 2011 Genetic
	protection of wheat from rusts and development of resistant varieties in Russia
	and Ukraine. Euphytica 179: 297-311.
10822.	Huang L, Zhang LQ, Liu BL, Yan ZH, Zhang B, Zhang YL & Liu DC 2011
	Molecular tagging of a stripe rust resistance gene in Aegilops tauschii.
	Euphytica 179: 313-318.
10823.	Khleskina EK, Salina EA, Matties, Leonova IN, Borner A & Roder MS 2011
	Comparative molecular marker-based genetic mapping of flavones 3-
	hydoxylase genes in wheat, rye and barley. Euphytica 179: 333-341.
10824.	Tsilo TJ, Jin Y & Anderson JA 2008 Diagnostic microsatellite markers for the
	detection of stem rust resistance gene Sr36 in diverse genetic backgrounds of
	wheat. Crop Science 48: 253-261.
10825.	Wu SG, Pumphrey M & Bai GH 2009 Molecular mapping of stem-rust-
	resistance gene Sr40 in wheat. Crop Science 49: 1681-1686.
10826.	Murphy LR, Santra D, Kidwell K, Yan GP, Chen XM & Garland Campbell K
	2009 Linkage maps of wheat stripe rust resistance genes Yr5 and Yr15 for use
	in marker-assisted selection. Crop Science 49: 1786-1790.
10827.	Ghaffary SMT, Robert O, Laurent V, Lonnet P, Margale E, van der Lee TAJ,
	Visser RGF & Kema GHJ 2011 Genetic analysis of resistance to Septoria
	tritici blotch in the French winter wheat cultivars Balance and Apache.
10000	Theoretical and Applied Genetics 123: 741-754.
10828.	McIntosh RA, Zhang P, Cowger C, Parks R, Lagudah ES & Hoxha S 2011
	Rye-derived powdery mildew resistance gene <i>Pm8</i> in wheat is suppressed by
10020	the <i>Pm3</i> locus. Theoretical and Applied Genetics 123: 359-367.
10829.	Zhou XL, Wang WL, Wang LL, Hou DY, Jing JX, Wang Y, Xu ZQ, Yao Q,
	Y in JL & Ma DF 2011 Genetics and molecular mapping of genes for high-
	and Applied Constinue 123: 4210–428
10830	Kolmer IA, Long DL & Hughes ME, 2011, Physiologic specialization of
10050.	<i>Puccinia triticina</i> on wheat in the United States in 2009 Plant Disease 95: 935-
	940
10831	Abate ZA Liu S & McKendry AL 2008 Quantitative trait loci associated with
10001	deoxynivalenol content and kernel quality in the soft red winter wheat 'Ernie'.
	Crop Science 48: 1408-1418.
10832.	Jefferies SP, Pallotta MA, Paull JG, Karakousis A, Kretschmer JM, Manning S,
	Islam AKMR, Langridge P & Chalmers KJ 2000 Mapping and validation of
	chromosome regions conferring boron toxicity tolerance in wheat (Triticum
	aestivum). Theoretical and Applied Genetics 101: 767-777.
10833.	Schnurbusch T, Collins NC, Eastwood RF, Sutton T, Jefferies SP & Langridge
	P 2007 Fine mapping and targeted SNP survey using rice-wheat gene
	collinearity in the region of the Bol boron toxicity locus of bread wheat.
	Theoretical and Applied Genetics 101: 451-461.
10834.	Schnurbusch T, Langridge P & Sutton T 2008 The Bol-specific PCR marker
	AWW5L7 is predictive of boron tolerance status in a range of exotic durum and
	bread wheats. Genome 51: 963-971.
10835.	Schnurbusch T, Hayes J & Sutton T 2010 Boron toxicity in wheat and barley:
1000	Australian perspectives. Breeding Science 60: 297-304.
10836.	Quincke MC, Peterson CJ, Zemetra RS, Hansen JL, Chen JL, Riera-Lizarazu &
	Mundt CC 2011 Quantitative trait loci for resistance to Cephalosporium stripe,

	a vascular wilt disease of wheat. Theoretical and Applied Genetics 122: 1339-
1000-	1349.
10837.	Li T, Bai GH, Wu SY & Gu SL 2011 Quantitative trait loci for resistance to
	Fusarium head blight in a Chinese wheat landrace Haiyanzhong. Theoretical
	and Applied Genetics 122: 1497-1502.
10838.	Himi E, Maekawa M, Miura H & Noda K 2011 Development of PCR markers
	for <i>Tamyb10</i> related to <i>R</i> -1, red grain color in wheat. Theoretical and Applied
	Genetics 122: 1561-1576.
10839.	Sherman JD, Souza E, See D & Talbert LE 2011 Microsatellite markers for
	grain color in wheat. Crop Science 48: 1419-1424.
10840.	Sun XC, Bai GH, Carver BF & Bowden R 2010 Molecular mapping of wheat
	leaf rust resistance gene <i>Lr42</i> . Crop Science 50: 59-66.
10841.	Blake NK, Stougaard RN, Weaver DK, Sherman JD, Lanning SP, Naruoka Y,
	Xue Q, Martin JM & Talbert LE 2011 Identification of a quantitative trait
	locus for resistance to Sitodiplosis mosellana Gehn, the orange blossom midge,
	in spring wheat. Plant Breeding 130: 25-50.
10842.	Singh A, Pallavi JK, Gupta P & Prabhu KV 2011 Identification of
	microsatellite markers linked to leaf rust adult plant resistance (APR) gene Lr48
	in wheat. Plant Breeding 130: 31-34.
10843.	Mohler V, Baur A, Baur C, Flath K, Schweizer G & Hartl L 2011 Genetic
	analysis of powdery mildew resistance in German winter wheat cultivar Cortez.
	Plant Breeding 130: 35-40.
10844.	Miranda LM, Bland DE, Cambron SE, Lyerly JH, Johnson J, Buntin GD &
	Murphy JP 2010 Genetic mapping of an Aegilops tauschii-derived Hessian fly
	resistance gene in common wheat. Crop Science 50: 612-616.
10845.	Olsen EL, Brown-Guedira G, Marshall DS, Jin Y, Mergoum M, Lowe I &
	Dubcovsky J 2010 Genotyping of U.S. wheat germplasm for presence of stem
	rust resistance genes <i>Sr24</i> , <i>Sr26</i> and <i>Sr1RS</i> ^{Amigo} . Crop Science 59: 668-675.
10846.	Yu GT, Williams CE, Harris MO, Cai XW, Mergoum M & Xu SS 2010
	Development and validation of molecular markers closely linked to H32 for
	resistance to Hessian fly in wheat. Crop Science 50: 1325-1332.
10847.	Herrera-Foessel SA, Singh RP, Huerta-Espino J, Bhavani S, Singh S, Lan C &
	Lagudah ES. Lr67/Yr46/Sr55 confers adult plant resistance to Puccinia
	graminis f.sp. tritici. Manuscript in preparation.
10848.	Mohler V, Singh D, Singrun C & Park RF 2012 Characterization and mapping
	of <i>Lr65</i> in spelt wheat 'Altgold Rotkorn'. Plant Breeding 131: 252-257.
10849.	Liu J, Chang ZJ, Zhang XJ, Yang ZJ, Li X, Jia JQ, Zhan HX, Zhang CZ 2011
	Thinopyrum intermedium-derived stripe rust resistance gene Yr50 maps on
	wheat chromosome 4BL. Draft manuscript.
10850.	Bansal U et al. 2011 Personal communication.
10851.	Bansal U et al. 2011 Personal communication.
10852	Ren RS. Wang MN. Chen XM & Zhang ZI 2012. Characterization and
10002.	molecular mapping of a new gene for high-temperature adult-plant resistance to
	stripe rust in spring wheat germplasm PI 183527 Manuscript in preparation
10853	Wang MN Chen XM Xu LS Cheng P & Bockelman HF 2012 Registration
10033.	of 70 common spring wheat germplasm lines resistant to strine rust. Journal of
	Plant Registrations 6:00-00 Online: doi: 10.3198/inr2011.05.0261.org
10854	Xu I S Wang MN Cheng P Kang 7S Hulbert SH & Chen YM 2012
10054.	1 Δu Δb , v and v

	Molecular mapping of a new gene for stripe rust resistance in durum wheat PI
	480148 and its transfer to common wheat. Manuscript in preparation.
10855.	Joshi AK, Chand R, Kumar S & Singh RP 2004 Leaf tip necrosis: A
	phenotypic marker associated with resistance to spot blotch disease in wheat.
	Crop Science 44: 792-796.
10856.	Lillemo M, Joshi AK, Prasad R, Chand & Singh RP 2012. Association of Lr34
	and <i>Lr46</i> with spot blotch resistance in wheat. Manuscript in preparation
10857.	Peng ZS, Li X, Yang ZJ & Liao ML 2011 A new reduced height gene found in
	the tetraploid semi-dwarf wheat landrace Aiganfanmai. Genetics and Molecular
	Research 10: 2349-2357.
10858.	Hiebert CW, Fetch TG & Zegeye T 2010 Genetics and mapping of stem rust
	resistance to UG99 in the wheat cultivar Webster. Theoretical and Applied
	Genetics 121:65-69.
10859.	Cao AZ, Xing LP, Wang XY, Yang XM, Wang W, Sun YL, Qian C, Ni YL,
	Chen YP, Liu DJ, Wang XE & Chen PD 2011 Serine/threonine kinase gene
	Stpk-V, a key member of powdery mildew resistance gene Pm21, confers
	powdery mildew resistance in wheat. Proceedings of the National Academy of
	Sciences USA 108: 7727-7732.
10860.	Chu CG, Niu ZX, Zhong SB, Chao SM, Friesen TL, Halley S, Elias EM, Dong
	YH, Faris JD & Xu SS 2011 Identification and molecular mapping of two
	QTLs with major effects for resistance to Fusarium head blight in wheat.
	Theoretical and Applied Genetics 123: 1107-1119.
10861.	Singh RP et al. Lr34/Yr18/Pm38/Ltn1 confers slow rusting, adult plant
	resistance to <i>Puccinia graminis</i> f.sp. <i>tritici</i> . Manuscript in preparation.
10862.	Krattinger SG, Lagudah ES, Spielmeyer W, Singh RP, Huerta-Espino J,
	McFadden M, Bossolini E, Selter LL & Keller B. 2009. A putative ABC
	transporter confers durable resistance to multiple fungal pathogens in wheat.
10010	Science 323: 1360-63.
10863.	Bhavani S, Singh RP, Argillier O, Huerta-Espino J, Singh S, Njau P, Brun S,
	Lacam S & Desmouceaux N 2011 Mapping durable adult plant stem rust
	resistance to the race Ug99 group in six CIMMYT wheats. In: McIntosh R
	(ed.) Proceedings of the Borlaug Global Rust Initiative 2011 Technical
	Workshop, June 13-16, Saint Paul, Minnesota, U.S.A. Borlaug Global Rust
100 (1	Initiative, www.globalrust.org, ISBN: 978-0-615-54519-6. Pp 43-53.
10864.	Kolmer JA, Garvin DF & Jin Y 2011 Expression of a Thatcher wheat adult
	plant stem rust resistance Q1L on chromosome arm 2BL is enhanced by Lr34.
10965	Crop Science 51: 520-555.
10805.	havenloid wheet or Conthetch by chromosome 7DL. Consider Journal of
	Rotony 58: 1247 1250
10866	Karbar EP & Aung T 1000 L of rust resistance gone Lr ² / associated with
10800.	nonsuppression of stom rust resistance in the wheet cultiver Contheteb
	Phytopathology 80: 518 521
10867	Abevsekara NS Faris ID Chao AM McClean DE & Eriasan TI 2012 Whole
10807.	appended TL analysis of Stagonospora podorum blotch resistance and
	yalidation of the SnTox40 Sund interaction Divident to logy 102:04, 104
10869	Vanuation of the Shirox40-Shirld Interaction. Phytopathology 102, 94-104.
10008.	D 2010 Distribution of <i>Rht</i> genes in modern and historic winter wheat cultiver
	from Eastern and Contal USA Crop Science 50, 1911 1922
	nom Lastern and Cental USA. Crop Science 30, 1011-1022.

10869.	Olson EL, Brown-Guedira G, Marshall D, Stack E, Bowden RL, Jin Y, Rouse
	M & Pumphrey M 2010 Development of wheat lines having a small
	introgressed segment carrying stem rust resistance gene Sr22. Crop Science 50:
	1823-1830.
10870.	Tsilo TJ, Jin Y & Anderson JA 2010 Identification of flanking markers for the
	stem rust resistance gene Sr6 in wheat. Crop Science 50: 1967-1970.
10871.	Abeysekara NS, Friesen TL, Liu ZH, McClean PE, Faris JD 2010 Marker
	development and saturation mapping of the tan spot Ptr ToxB sensitivity locus
	<i>Tsc2</i> in hexaploid wheat. The Plant Genome 3: 179-189.
10872.	Klindworth DL, Niu ZX, Chao SM, Friesen TL, Jin Y, Faris JD, Cai XW & Xu
	SS 2012 Introgression and characterization of a goatgrass gene for a high level
	of resistance to Ug99 stem rust in tetraploid wheat. Genes, Genomes &
	Genetics 2: 665-673.
10873.	Maxwell JJ, Lyerly JH, Srnic G, Parks R, Cowger C, Marshall D, Brown-
	Guedira G & Murphy JP 2010 MlAB10: A Triticum turgidum subsp.
	<i>dicoccoides</i> derived powdery mildew resistance gene identified in common
	wheat. Crop Science 50: 2261-2267.
10874.	Thomas J, Nilmalgoda S, Hiebert C, McCallum B, Humphries G & DePauw R
	2010 Genetic markers and leaf rust resistance of the wheat gene <i>Lr32</i> . Crop
	Science 50: 2310-2317.
10875.	Kolmer JA, Anderson JA & Flor JM 2010 Chromosome location, linkage with
	simple sequence repeat markers, and leaf rust resistance conditioned by gene
	<i>Lr63</i> in wheat. Crop Science 50: 2392-2395.
10876.	Zhang WJ, Olson E, Saintenac C, Rouse M, Abate Z, Jin Y, Akhunov E,
	Pumphrey M & Dubcovsky J 2010 Genetic maps of stem rust resistance gene
	<i>Sr35</i> in diploid and hexaploid wheat. Crop Science 50: 2464-1474.
10877.	Liu XL, Yang XF, Wang CY, Wang YJ, Zhang H & Ji WQ 2012 Molecular
	mapping of resistance to English grain aphid (Sitobion avenae F.) in Triticum
	durum wheat line C273. Theoretical and Applied Genetics 124: 287-293.
10878.	Simons KJ, Gehlhar SB, Maan SS & Kianian SF 2003 Detailed mapping of
	the species cytoplasm-specific (scs) gene in durum wheat. Genetics 165: 2129-
	2136.
10879.	Ghaffary SMT, Faris JD, Friesen TL, Visser RGF, van der Lee TAG, Robert O
	& Kema GHJ 2012 New broad-spectrum resistance to Septoria tritici blotch
	derived from synthetic hexaploid wheat. Theoretical and Applied Genetics 124:
	125-142.
10880.	Chu C-G, Tan CT, Yu GT, Xu SS & Lan L 2011 A novel retrotransposon
	inserted in the dominant Vrn-BI allele confers spring growth habit in tetraploid
10001	wheat (<i>Triticum turgidum</i> L.). Genes, Genomes & Genetics 1: 637-645.
10881.	Diaz A, Zikhali M, Turner AS, Isaac P, Laurie DA (2012) Copy number
	variation affecting the <i>photoperiod-B1</i> and <i>vernalization-A1</i> genes is associated
	with altered flowering time in wheat (<i>Iriticum aestivum</i>). Plos One: 7(3) 233-
10992	234.
10882.	Ayala-Navarrete L, Thompson N, Ohm H & Anderson J 2010 Molecular
	markers snow a complex mosaic pattern of wheat- <i>Ininoyrum intermedium</i>
	121, 061 070
10992	121. 701-770. Rovillo WD Horne M Herde D Davis M Wildormuth CD & Sutherland MW
10003.	2010 Pyramiding OTL increases seedling resistance to grown rot (Eugenium
	2010 Fylamoung QTL increases seeding resistance to crown rot (<i>Fusarium</i>)
	pseudogrammeurum) of wheat (1rmcum destivum). Theoretical and Applied

	Genetics 121: 127-136.
10884.	Xue SL, Li GQ, Jia HY, Xu F, Lin F, Tang MZ, Wang Y, An X, Xu HB, Zhang
	LX, Kong ZX & Ma ZQ 2010 Fine mapping Fhb4, a major QTL conditioning
	resistance to Fusarium infection in bread wheat (Triticum aestivum L.)
	Theoretical and Applied Genetics 121: 147-156.
10885.	Xue SL, Li GQ, Jia HY, Lin F, Cao Y, Xu F, Tang MZ, Wang Y, Wu XY,
	Zhang ZZ, Kong ZX & Ma ZQ 2009 Marker-assisted development and
	evaluation of near-isogenic lines for scab resistance QTLs of wheat. Molecular
	Breeding 25: 397-405.
10886.	Ben-David R, Xie WL, Peleg Z, Saranga Y, Dinoor A & Fahima T 2010
	Identification and mapping of <i>PmG16</i> , a powdery mildew resistance gene
	derived from wild emmer wheat. Theoretical and Applied Genetics 121: 499-
	510.
10887.	Dakouri A, McCallum BD, Walichnowski AZ & Cloutier S 2010 Fine-
	mapping of the leaf rust <i>Lr34</i> locus in <i>Triticum aestivum</i> (L.) and
	characterization of large germplasm collections support the ABC transporter as
10000	essential for gene function. Theoretical and Applied Genetics 121: 3/3-384.
10888.	Cao SH, Carver BF, Zhu XK, Tang TL, Chen YH, Hunger RM & Yan LL
	2010 A single-nucleotide polymorphism that accounts for allelic variation in
	the Lr34 gene and leaf rust reaction in hard wheat. Theoretical and Applied
10000	Genetics 121: $385-392$.
10889.	McCallum BD, Humphries DG, Somers DJ, Dakouri A & Cloutier S 2012.
	Allenc Variation for the fust resistance gene Lr54/1r18 in Canadian wheat oultivers. Europytics 183: 261-274
10200	Varauaz MD, Deterson CL Diero Lizarazu, Chan XM, Haasaakar A, Ammar K
10890.	Crossa L& Mundt CC 2012 Genetic analysis of adult plant, quantitative
	resistance to strine rust in wheat cultivar 'Stephens' in multi-environment trials
	Theoretical and Applied Genetics 124: 1-11
10891.	Ma J. Yan GJ & Liu CJ 2012 Development of near-isogenic lines for a major
	OTL on 3BL conferring <i>Fusarium</i> crown rot resistance in hexaploid wheat.
	Euphytica 183: 147-152.
10892.	Zhang HT, Huan HY, Li JT, Zhu J, Xie CJ, Zhou YL, Duan XY, Yang TM, Sun
	QX & Liu ZY 2010 Genetic and comparative genomics mapping reveals that a
	powdery mildew resistance gene Ml3D232 originating from wild emmer co-
	segregates with an NBS-LRR analog in common wheat (Triticum aestivum L.).
	Theoretical and Applied Genetics 121: 1613-1621.
10893.	Liu SB & Bai GH 2010 Dissection and fine mapping of a major QTL for
	preharvest sprouting resistance in white wheat Rio Blanco. Theoretical and
	Applied Genetics 121: 1395-1404.
10894.	Knox RE, Pozniak CJ, Clarke FR, Clarke JM, Housgmand S & Singh AK 2009
	Chromosomal location of the cadmium uptake gene $(Cdu1)$ in durum wheat.
	Genome 52: 741-747.
10895.	Wiebe K, Harris NS, Faris JD, Clarke JM, Knox RE, Taylor GJ & Pozniak CJ
	2010 Targeted mapping of <i>Cdu1</i> , a major locus regulating grain cadmium
	concentration in durum wheat (<i>Triticum turgidum</i> L. var <i>durum</i>). Theoretical
10000	and Applied Genetics 121:104/-1058.
10896.	Aue SL, Au F, Iang WIZ, Znou Y, LI GQ, An X, Lin F, Xu HB, Jia HY, Zhang
	LA, KOUG ZA & Ma ZQ 2011 Precise inapping of <i>FNDS</i> , a major Q1L
	conditioning resistance to <i>Fusarium</i> infection in bread wheat (<i>Triticum</i> asstingthe L). Theoretical and Applied Constitution 122: $1055, 1062$
	aestivum L.). Theoretical and Applied Genetics 123: 1055-1063.

10897.	Xu WG, Li CX, Hu L, Wang HW, Dong HB, Zhang JZ & Zan XC 2011
	Identification and molecular mapping of <i>PmHNK54</i> : a novel powdery mildew
	resistance gene in common wheat. Plant Breeding 130: 603-607.
10898.	Lu HJ, Price J, Devkota R, Rush C & Rudd K 2011 A dominant gene for
	resistance to Wheat Streak Mosaic Virus in winter wheat line CO960293-2.
	Crop Science 51: 5-12.
10899.	Morris CF, Simeone MN, King GE & Lafiandra D 2011 Transfer of soft
	kernel texture from Triticum aestivum to durum wheat, Triticum turgidum ssp.
	durum. Crop Science 51: 114-122.
10900.	Yabalo DN, Mergoum M & BerzonskyWA 2011 Further characterization of
	the scab resistance of 'Frontana' spring wheat and the relationship between
	resistance mechanisms. Plant Breeding 130: 521-525.
10901.	Risser P, Ebmeyer E, Korzun V, Hartl L & Miedaner T 2011 Quantitative trait
	loci for adult-plant resistance to Mycosphaerella graminicola in two winter
	wheat populations. Phytopathology 101: 1209-1216.
10902.	Kolmer JA, Garvin DF & Jin Y 2011 Expression of Thatcher wheat adult plant
	stem rust resistance QTL on chromosome arm 2BL is enhanced by Lr34. Crop
	Science 51: 526-533.
10903.	Barcellos Rosa S et al. 2012 Personal communication.
10904.	Thomas J et al. 2012. Personal communication.
10905.	Cenci A, Somma S, Chantret N, Dubcovsky J & Blanco A 2004 PCR
	identification of durum wheat BAC clones containing genes coding for
	carotenoid biosynthesis enzymes and their chromosome localization. Genome:
	47: 911-917.
10906.	Zhang CY, Dong CH, He XY, Zhang LP, Xia XC & He ZH 2011 Allelic
	variants at the <i>Tzds-D1</i> locus on wheat chromosome 2DL and their association
	with yellow pigment content. Crop Science 51: 1580-1590.
10907.	Azhaguvel P, Rudd JC, Ma YQ, Luo MC & Weng YQ 2012 Fine mapping of
	greenbug aphid-resistance gene Gb3 in Aegilops tauschii. Theoretical and
	Applied Genetics 124: 555-564.
10908.	Eagles HA, Cane K, Appelbee M, Kuchel H, Eastwood RF & Martin PJ 2012
	The storage protein activator gene Spa-BI and grain quality traits in southern
	Australian wheat breeding programs. Crop & Pasture Science 63: 311-318.
10909.	Guillaumie S, Charmet G, Linossier L, Torney V, Robert N & Ravel C 2004
	Co-location between a gene encoding the bZIP factor SPA and an eQTL for a
	nign-molecular-weight glutenin subunit in wheat (<i>Triticum aestivum</i>). Genome
10010	4/: /UD-/15.
10910.	Nomer v et al. 2012 Plant Breeding online first DOI:10.1111/j.1439-
10011	UJ25.2011.01954.X. Singh D at al. 2012. Droft manuscript
10911.	Singh D Ct al. 2012 Dialt manuscript. Viao MG et al. 2012 Molecular identification of games conferring resistance to
10912.	nowdery mildew in Chinese wheet landrages I DmUVLZ on chromosome 7PS
	in Hongyanglazi Manuscrint
10913	Dubcovsky ID 2012 Personal communication
10913.	Hao YE Chen ZB Wang YY Bland D Buck I Brown-Guedira G & Johnson I
10714.	2011 Characterization of a major OTL for adult plant resistance to strine rust in
	US soft red winter wheat Theoretical and Applied Genetics 123. 1301-1411
10915	Bentley AR Turner AS Gosman N Leigh FI Maccaferri M Dreisgacher S
10713.	Greenland A & Laurie DA 2011 Frequency of photoperiod insensitive <i>Pnd</i> .
	Greemand II & Laurie DII 2011 Trequency of photoperiod insensitive I pa-

	Ala alleles in tetraploid, hexaploid and synthetic hexaploid wheat germplasm.
	Plant Breeding 130: 10-15.
10916.	Eagles HA, Cane K & Trevaskis B 2011 Veery wheat carry an allele of Vrn-
	A1 that has implications for freezing tolerance in winter wheats. Plant
	Breeding 130: 412-418.
10917.	Genc Y, Oldach K, Verbyla AP, Lott G, Hassan M, Tester M, Wallwork H &
	McDonald G 2010 Sodium exclusion QTL associated with improved seedling
	growth in bread wheat under salinity stress. Theoretical and Applied Genetics
	121: 877-894.
10918.	Xie WL, Ben-David R, Zeng B, Dinoor A, Xie CJ, Sun QX, Roder MS,
	Fahoum A & Fahima T 2012 Suppressed recombination rate in 6VS/6AL
	translocation region carrying the <i>Pm21</i> locus introgressed from <i>Haynaldia</i>
	villosa into hexaploid wheat. Molecular Breeding 29: 399-412.
10919	Chang C, Zhang HP, Zhao QX, Feng JM, Si HQ, Lu J & Ma CX 2011 Rich
	allelic variations of Viviparous-1A and their associations with seed
	dormancy/pre-harvest sprouting of common wheat. Euphytica 179: 343-353.
10920	Crawford AC, Stefanova K, Lambe W, McLean R, Wilson R, Barclay I &
	Francki MG 2011 Functional relationships of <i>phytoene synthase I</i> alleles on
	chromosome 7A controlling flour variation in selected Australian wheat
	genotypes. Theoretical and Applied Genetics 123: 95-108.